# General spectral flow formula for fixed maximal domain

Bernhelm Booss-Bavnbek; Chaofeng Zhu

Open Mathematics (2005)

- Volume: 3, Issue: 3, page 558-577
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topBernhelm Booss-Bavnbek, and Chaofeng Zhu. "General spectral flow formula for fixed maximal domain." Open Mathematics 3.3 (2005): 558-577. <http://eudml.org/doc/268740>.

@article{BernhelmBooss2005,

abstract = {We consider a continuous curve of linear elliptic formally self-adjoint differential operators of first order with smooth coefficients over a compact Riemannian manifold with boundary together with a continuous curve of global elliptic boundary value problems. We express the spectral flow of the resulting continuous family of (unbounded) self-adjoint Fredholm operators in terms of the Maslov index of two related curves of Lagrangian spaces. One curve is given by the varying domains, the other by the Cauchy data spaces. We provide rigorous definitions of the underlying concepts of spectral theory and symplectic analysis and give a full (and surprisingly short) proof of our General Spectral Flow Formula for the case of fixed maximal domain. As a side result, we establish local stability of weak inner unique continuation property (UCP) and explain its role for parameter dependent spectral theory.},

author = {Bernhelm Booss-Bavnbek, Chaofeng Zhu},

journal = {Open Mathematics},

keywords = {58J30; 53D12},

language = {eng},

number = {3},

pages = {558-577},

title = {General spectral flow formula for fixed maximal domain},

url = {http://eudml.org/doc/268740},

volume = {3},

year = {2005},

}

TY - JOUR

AU - Bernhelm Booss-Bavnbek

AU - Chaofeng Zhu

TI - General spectral flow formula for fixed maximal domain

JO - Open Mathematics

PY - 2005

VL - 3

IS - 3

SP - 558

EP - 577

AB - We consider a continuous curve of linear elliptic formally self-adjoint differential operators of first order with smooth coefficients over a compact Riemannian manifold with boundary together with a continuous curve of global elliptic boundary value problems. We express the spectral flow of the resulting continuous family of (unbounded) self-adjoint Fredholm operators in terms of the Maslov index of two related curves of Lagrangian spaces. One curve is given by the varying domains, the other by the Cauchy data spaces. We provide rigorous definitions of the underlying concepts of spectral theory and symplectic analysis and give a full (and surprisingly short) proof of our General Spectral Flow Formula for the case of fixed maximal domain. As a side result, we establish local stability of weak inner unique continuation property (UCP) and explain its role for parameter dependent spectral theory.

LA - eng

KW - 58J30; 53D12

UR - http://eudml.org/doc/268740

ER -

## References

top- [1] W. Ambrose: “The index theorem in Riemannian geometry”, Ann. of Math., Vol. 73, (1961), pp. 49–86. http://dx.doi.org/10.2307/1970282 Zbl0104.16401
- [2] V.I. Arnol'd: “Characteristic class entering in quantization conditions”, Funkcional. Anal. i Priložen., Vol. 1, (1967), pp. 1–14 (in russian); Functional Anal. Appl., Vol. 1, (1967), pp. 1–13 (in english); Théorie des perturbations et méthodes asymptotiques, Dunod, Gauthier-Villars, Paris, 1972, pp. 341–361 (in french). http://dx.doi.org/10.1007/BF01075861 Zbl0175.20303
- [3] M.F. Atiyah, V.K. Patodi and I.M. Singer: “Spectral asymmetry and Riemannian geometry, I”, Math. Proc. Cambridge Phil. Soc., Vol. 77, (1975), pp. 43–69. http://dx.doi.org/10.1017/S0305004100049410 Zbl0297.58008
- [4] B. Bojarski: “The abstract linear conjugation problem and Fredholm pairs of subspaces” In: In Memoriam I.N. Vekua, Tbilisi Univ., Tbilisi, 1979, pp. 45–60 (in russian).
- [5] B. Booss-Bavnbek and K. Furutani: “The Maslov index-a functional analytical definition and the spectral flow formula”, Tokyo. J. Math., Vol. 21, (1998), pp. 1–34. http://dx.doi.org/10.3836/tjm/1270041982 Zbl0932.37063
- [6] B. Booss-Bavnbek, K. Furutani and N. Otsuki: “Criss-cross reduction of the Maslov index and a proof of the Yoshida-Nicolaescu Theorem”, Tokyo J. Math., Vol. 24, (2001), pp. 113–128. http://dx.doi.org/10.3836/tjm/1255958316 Zbl1038.53072
- [7] B. Booss-Bavnbek, M. Lesch and J. Phillips: “Unbounded Fredholm operators and spectral flow”, Canad. J. Math., Vol. 57(2), (2005), pp. 225–250, arXiv: math.FA/0108014. Zbl1085.58018
- [8] B. Booss-Bavnbek, M. Lesch and C. Zhu: “Elliptic differential operators on compact manifolds with smooth boundary”, in preparation. Zbl1257.58017
- [9] B. Booss-Bavnbek, M. Marcolli and B.-L. Wang: “Weak UCP and perturbed monopole equations”, Internat. J. Math., Vol. 13(9), (2002), pp. 987–1008. http://dx.doi.org/10.1142/S0129167X02001551 Zbl1058.58014
- [10] B. Booss-Bavnbek and K.P. Wojciechowski: Elliptic Boundary Problems for Dirac Operators, Birkhäuser, Boston, 1993.
- [11] B. Booss-Bavnbek and C. Zhu: Weak Symplectic Functional Analysis and General Spectral Flow Formula, Preprint, Roskilde, December 2003, arXiv: math.DG/0406139. Zbl1307.53063
- [12] S.E. Cappell, R. Lee and E.Y. Miller: “Selfadjoint elliptic operators and manifold decompositions Part II: Spectral flow and Maslov index”, Comm. Pure Appl. Math., Vol. 49, (1996), pp. 869–909. http://dx.doi.org/10.1002/(SICI)1097-0312(199609)49:9<869::AID-CPA1>3.0.CO;2-5
- [13] A. Carey and J. Phillips: Spectral Flow in Fredholm Modules, Eta Invariants and the JLO Cocycle, Preprint 2003, arXiv: math.KT/0308161. Zbl1051.19004
- [14] J.J. Duistermaat: “On the Morse index in variational calculus”, Adv. Math., Vol. 21, (1976), pp. 173–195. http://dx.doi.org/10.1016/0001-8708(76)90074-8 Zbl0361.49026
- [15] A. Floer: “A relative Morse index for the symplectic action”, Comm. Pure Appl. Math., Vol. 41, (1988), pp. 393–407. Zbl0633.58009
- [16] B. Himpel, P. Kirk and M. Lesch: “Calderón projector for the Hessian of the Chern-Simons function on a 3-manifold with boundary”, Proc. London. Math. Soc., Vol. 89, (2004), pp. 241–272, arXiv: math.GT/0302234. http://dx.doi.org/10.1112/S0024611504014728 Zbl1082.58023
- [17] T. Kato: Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin, 1966; 1976 corrected printing; 1980. Zbl0148.12601
- [18] P. Kirk and M. Lesch: “The η-invariant, Maslov index, and spectral flow for Diractype operators on manifolds with boundary”, Forum Math., Vol. 16(4), (2004), pp. 553–629, arXiv: math.DG/0012123. http://dx.doi.org/10.1515/form.2004.027
- [19] B. Lawruk, J. Śniatycki and W.M. Tulczyjew: “Special symplectic spaces”, J. Differential Equations, Vol. 17, (1975), pp. 477–497. http://dx.doi.org/10.1016/0022-0396(75)90057-1 Zbl0324.58018
- [20] Y. Long and C. Zhu: “Maslov-type index theory for symplectic paths and spectral flow (II)”, Chinese Ann. of Math. B, Vol. 21(1), (2000), pp. 89–108. http://dx.doi.org/10.1142/S0252959900000133 Zbl0959.58017
- [21] M. Morse: The Calculus of Variations in the Large, Vol. 18, A.M.S. Coll. Publ., Amer. Math. Soc., New York, 1934.
- [22] L. Nicolaescu: “The Maslov index, the spectral flow, and decomposition of manifolds”, Duke Math. J., Vol. 80, (1995), pp. 485–533. http://dx.doi.org/10.1215/S0012-7094-95-08018-1 Zbl0849.58064
- [23] J. Phillips: “Self-adjoint Fredholm operators and spectral flow”, Canad. Math. Bull., Vol. 39, (1996), pp. 460–467. Zbl0878.19001
- [24] P. Piccione and D.V. Tausk: “The Maslov index and a generalized Morse index theorem for non-positive definite metrics”, C. R. Acad. Sci. Paris Sér. I. Math., Vol. 331, (2000), pp. 385–389. Zbl0980.53095
- [25] “The Morse index theorem in semi-Riemannian Geometry”, Topology, Vol. 41, (2002), pp. 1123–1159, arXiv: math.DG/0011090. Zbl1040.53052
- [26] A. Pliś: “A smooth linear elliptic differential equation without any solution in a sphere”, Comm. Pure Appl. Math., Vol. 14, (1961), pp. 599–617. Zbl0163.13103
- [27] J.V. Ralston: “Deficiency indices of symmetric operators with elliptic boundary conditions”, Comm. Pure Appl. Math., Vol. 23, (1970), pp. 221–232. Zbl0188.40904
- [28] J. Robbin and D. Salamon: “The Maslov index for paths”, Topology, Vol. 32, (1993), pp. 823–844. http://dx.doi.org/10.1016/0040-9383(93)90052-W Zbl0798.58018
- [29] R.T. Seeley: “Singular integrals and boundary value problems”, Amer. J. Math., Vol. 88, (1966), pp. 781–809. http://dx.doi.org/10.2307/2373078 Zbl0178.17601
- [30] K.P. Wojciechowski: “Spectral flow and the general linear conjugation problem”, Simon Stevin, Vol. 59, (1985), pp. 59–91. Zbl0577.58029
- [31] Tomoyoshi Yoshida: “Floer homology and splittings of manifolds”, Ann. of Math., Vol. 134, (1991), pp. 277–323. http://dx.doi.org/10.2307/2944348 Zbl0748.57002
- [32] C. Zhu: Maslov-type index theory and closed characteristics on compact convex hypersurfaces in ℝ2n , Thesis (PhD), Nankai Institute, Tianjin, 2000 (in Chinese).
- [33] C. Zhu: The Morse Index Theorem for Regular Lagrangian Systems, Preprint September 2001 (arXiv: math.DG/0109117) (first version); MPI Preprint 2003, no. 55 (modified version).
- [34] C. Zhu and Y. Long: “Maslov-type index theory for symplectic paths and spectral flow. (I)”, Chinese Ann. of Math. B, Vol. 20, (1999), pp. 413–424. http://dx.doi.org/10.1142/S0252959999000485 Zbl0959.58016

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.