General spectral flow formula for fixed maximal domain

Bernhelm Booss-Bavnbek; Chaofeng Zhu

Open Mathematics (2005)

  • Volume: 3, Issue: 3, page 558-577
  • ISSN: 2391-5455

Abstract

top
We consider a continuous curve of linear elliptic formally self-adjoint differential operators of first order with smooth coefficients over a compact Riemannian manifold with boundary together with a continuous curve of global elliptic boundary value problems. We express the spectral flow of the resulting continuous family of (unbounded) self-adjoint Fredholm operators in terms of the Maslov index of two related curves of Lagrangian spaces. One curve is given by the varying domains, the other by the Cauchy data spaces. We provide rigorous definitions of the underlying concepts of spectral theory and symplectic analysis and give a full (and surprisingly short) proof of our General Spectral Flow Formula for the case of fixed maximal domain. As a side result, we establish local stability of weak inner unique continuation property (UCP) and explain its role for parameter dependent spectral theory.

How to cite

top

Bernhelm Booss-Bavnbek, and Chaofeng Zhu. "General spectral flow formula for fixed maximal domain." Open Mathematics 3.3 (2005): 558-577. <http://eudml.org/doc/268740>.

@article{BernhelmBooss2005,
abstract = {We consider a continuous curve of linear elliptic formally self-adjoint differential operators of first order with smooth coefficients over a compact Riemannian manifold with boundary together with a continuous curve of global elliptic boundary value problems. We express the spectral flow of the resulting continuous family of (unbounded) self-adjoint Fredholm operators in terms of the Maslov index of two related curves of Lagrangian spaces. One curve is given by the varying domains, the other by the Cauchy data spaces. We provide rigorous definitions of the underlying concepts of spectral theory and symplectic analysis and give a full (and surprisingly short) proof of our General Spectral Flow Formula for the case of fixed maximal domain. As a side result, we establish local stability of weak inner unique continuation property (UCP) and explain its role for parameter dependent spectral theory.},
author = {Bernhelm Booss-Bavnbek, Chaofeng Zhu},
journal = {Open Mathematics},
keywords = {58J30; 53D12},
language = {eng},
number = {3},
pages = {558-577},
title = {General spectral flow formula for fixed maximal domain},
url = {http://eudml.org/doc/268740},
volume = {3},
year = {2005},
}

TY - JOUR
AU - Bernhelm Booss-Bavnbek
AU - Chaofeng Zhu
TI - General spectral flow formula for fixed maximal domain
JO - Open Mathematics
PY - 2005
VL - 3
IS - 3
SP - 558
EP - 577
AB - We consider a continuous curve of linear elliptic formally self-adjoint differential operators of first order with smooth coefficients over a compact Riemannian manifold with boundary together with a continuous curve of global elliptic boundary value problems. We express the spectral flow of the resulting continuous family of (unbounded) self-adjoint Fredholm operators in terms of the Maslov index of two related curves of Lagrangian spaces. One curve is given by the varying domains, the other by the Cauchy data spaces. We provide rigorous definitions of the underlying concepts of spectral theory and symplectic analysis and give a full (and surprisingly short) proof of our General Spectral Flow Formula for the case of fixed maximal domain. As a side result, we establish local stability of weak inner unique continuation property (UCP) and explain its role for parameter dependent spectral theory.
LA - eng
KW - 58J30; 53D12
UR - http://eudml.org/doc/268740
ER -

References

top
  1. [1] W. Ambrose: “The index theorem in Riemannian geometry”, Ann. of Math., Vol. 73, (1961), pp. 49–86. http://dx.doi.org/10.2307/1970282 Zbl0104.16401
  2. [2] V.I. Arnol'd: “Characteristic class entering in quantization conditions”, Funkcional. Anal. i Priložen., Vol. 1, (1967), pp. 1–14 (in russian); Functional Anal. Appl., Vol. 1, (1967), pp. 1–13 (in english); Théorie des perturbations et méthodes asymptotiques, Dunod, Gauthier-Villars, Paris, 1972, pp. 341–361 (in french). http://dx.doi.org/10.1007/BF01075861 Zbl0175.20303
  3. [3] M.F. Atiyah, V.K. Patodi and I.M. Singer: “Spectral asymmetry and Riemannian geometry, I”, Math. Proc. Cambridge Phil. Soc., Vol. 77, (1975), pp. 43–69. http://dx.doi.org/10.1017/S0305004100049410 Zbl0297.58008
  4. [4] B. Bojarski: “The abstract linear conjugation problem and Fredholm pairs of subspaces” In: In Memoriam I.N. Vekua, Tbilisi Univ., Tbilisi, 1979, pp. 45–60 (in russian). 
  5. [5] B. Booss-Bavnbek and K. Furutani: “The Maslov index-a functional analytical definition and the spectral flow formula”, Tokyo. J. Math., Vol. 21, (1998), pp. 1–34. http://dx.doi.org/10.3836/tjm/1270041982 Zbl0932.37063
  6. [6] B. Booss-Bavnbek, K. Furutani and N. Otsuki: “Criss-cross reduction of the Maslov index and a proof of the Yoshida-Nicolaescu Theorem”, Tokyo J. Math., Vol. 24, (2001), pp. 113–128. http://dx.doi.org/10.3836/tjm/1255958316 Zbl1038.53072
  7. [7] B. Booss-Bavnbek, M. Lesch and J. Phillips: “Unbounded Fredholm operators and spectral flow”, Canad. J. Math., Vol. 57(2), (2005), pp. 225–250, arXiv: math.FA/0108014. Zbl1085.58018
  8. [8] B. Booss-Bavnbek, M. Lesch and C. Zhu: “Elliptic differential operators on compact manifolds with smooth boundary”, in preparation. Zbl1257.58017
  9. [9] B. Booss-Bavnbek, M. Marcolli and B.-L. Wang: “Weak UCP and perturbed monopole equations”, Internat. J. Math., Vol. 13(9), (2002), pp. 987–1008. http://dx.doi.org/10.1142/S0129167X02001551 Zbl1058.58014
  10. [10] B. Booss-Bavnbek and K.P. Wojciechowski: Elliptic Boundary Problems for Dirac Operators, Birkhäuser, Boston, 1993. 
  11. [11] B. Booss-Bavnbek and C. Zhu: Weak Symplectic Functional Analysis and General Spectral Flow Formula, Preprint, Roskilde, December 2003, arXiv: math.DG/0406139. Zbl1307.53063
  12. [12] S.E. Cappell, R. Lee and E.Y. Miller: “Selfadjoint elliptic operators and manifold decompositions Part II: Spectral flow and Maslov index”, Comm. Pure Appl. Math., Vol. 49, (1996), pp. 869–909. http://dx.doi.org/10.1002/(SICI)1097-0312(199609)49:9<869::AID-CPA1>3.0.CO;2-5 
  13. [13] A. Carey and J. Phillips: Spectral Flow in Fredholm Modules, Eta Invariants and the JLO Cocycle, Preprint 2003, arXiv: math.KT/0308161. Zbl1051.19004
  14. [14] J.J. Duistermaat: “On the Morse index in variational calculus”, Adv. Math., Vol. 21, (1976), pp. 173–195. http://dx.doi.org/10.1016/0001-8708(76)90074-8 Zbl0361.49026
  15. [15] A. Floer: “A relative Morse index for the symplectic action”, Comm. Pure Appl. Math., Vol. 41, (1988), pp. 393–407. Zbl0633.58009
  16. [16] B. Himpel, P. Kirk and M. Lesch: “Calderón projector for the Hessian of the Chern-Simons function on a 3-manifold with boundary”, Proc. London. Math. Soc., Vol. 89, (2004), pp. 241–272, arXiv: math.GT/0302234. http://dx.doi.org/10.1112/S0024611504014728 Zbl1082.58023
  17. [17] T. Kato: Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin, 1966; 1976 corrected printing; 1980. Zbl0148.12601
  18. [18] P. Kirk and M. Lesch: “The η-invariant, Maslov index, and spectral flow for Diractype operators on manifolds with boundary”, Forum Math., Vol. 16(4), (2004), pp. 553–629, arXiv: math.DG/0012123. http://dx.doi.org/10.1515/form.2004.027 
  19. [19] B. Lawruk, J. Śniatycki and W.M. Tulczyjew: “Special symplectic spaces”, J. Differential Equations, Vol. 17, (1975), pp. 477–497. http://dx.doi.org/10.1016/0022-0396(75)90057-1 Zbl0324.58018
  20. [20] Y. Long and C. Zhu: “Maslov-type index theory for symplectic paths and spectral flow (II)”, Chinese Ann. of Math. B, Vol. 21(1), (2000), pp. 89–108. http://dx.doi.org/10.1142/S0252959900000133 Zbl0959.58017
  21. [21] M. Morse: The Calculus of Variations in the Large, Vol. 18, A.M.S. Coll. Publ., Amer. Math. Soc., New York, 1934. 
  22. [22] L. Nicolaescu: “The Maslov index, the spectral flow, and decomposition of manifolds”, Duke Math. J., Vol. 80, (1995), pp. 485–533. http://dx.doi.org/10.1215/S0012-7094-95-08018-1 Zbl0849.58064
  23. [23] J. Phillips: “Self-adjoint Fredholm operators and spectral flow”, Canad. Math. Bull., Vol. 39, (1996), pp. 460–467. Zbl0878.19001
  24. [24] P. Piccione and D.V. Tausk: “The Maslov index and a generalized Morse index theorem for non-positive definite metrics”, C. R. Acad. Sci. Paris Sér. I. Math., Vol. 331, (2000), pp. 385–389. Zbl0980.53095
  25. [25] “The Morse index theorem in semi-Riemannian Geometry”, Topology, Vol. 41, (2002), pp. 1123–1159, arXiv: math.DG/0011090. Zbl1040.53052
  26. [26] A. Pliś: “A smooth linear elliptic differential equation without any solution in a sphere”, Comm. Pure Appl. Math., Vol. 14, (1961), pp. 599–617. Zbl0163.13103
  27. [27] J.V. Ralston: “Deficiency indices of symmetric operators with elliptic boundary conditions”, Comm. Pure Appl. Math., Vol. 23, (1970), pp. 221–232. Zbl0188.40904
  28. [28] J. Robbin and D. Salamon: “The Maslov index for paths”, Topology, Vol. 32, (1993), pp. 823–844. http://dx.doi.org/10.1016/0040-9383(93)90052-W Zbl0798.58018
  29. [29] R.T. Seeley: “Singular integrals and boundary value problems”, Amer. J. Math., Vol. 88, (1966), pp. 781–809. http://dx.doi.org/10.2307/2373078 Zbl0178.17601
  30. [30] K.P. Wojciechowski: “Spectral flow and the general linear conjugation problem”, Simon Stevin, Vol. 59, (1985), pp. 59–91. Zbl0577.58029
  31. [31] Tomoyoshi Yoshida: “Floer homology and splittings of manifolds”, Ann. of Math., Vol. 134, (1991), pp. 277–323. http://dx.doi.org/10.2307/2944348 Zbl0748.57002
  32. [32] C. Zhu: Maslov-type index theory and closed characteristics on compact convex hypersurfaces in ℝ2n , Thesis (PhD), Nankai Institute, Tianjin, 2000 (in Chinese). 
  33. [33] C. Zhu: The Morse Index Theorem for Regular Lagrangian Systems, Preprint September 2001 (arXiv: math.DG/0109117) (first version); MPI Preprint 2003, no. 55 (modified version). 
  34. [34] C. Zhu and Y. Long: “Maslov-type index theory for symplectic paths and spectral flow. (I)”, Chinese Ann. of Math. B, Vol. 20, (1999), pp. 413–424. http://dx.doi.org/10.1142/S0252959999000485 Zbl0959.58016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.