# Left-sided quasi-invertible bimodules over Nakayama algebras

Open Mathematics (2005)

- Volume: 3, Issue: 1, page 125-142
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topZygmunt Pogorzały. "Left-sided quasi-invertible bimodules over Nakayama algebras." Open Mathematics 3.1 (2005): 125-142. <http://eudml.org/doc/268743>.

@article{ZygmuntPogorzały2005,

abstract = {Bimodules over triangular Nakayama algebras that give stable equivalences of Morita type are studied here. As a consequence one obtains that every stable equivalence of Morita type between triangular Nakayama algebras is a Morita equivalence.},

author = {Zygmunt Pogorzały},

journal = {Open Mathematics},

keywords = {16D20; 16G20},

language = {eng},

number = {1},

pages = {125-142},

title = {Left-sided quasi-invertible bimodules over Nakayama algebras},

url = {http://eudml.org/doc/268743},

volume = {3},

year = {2005},

}

TY - JOUR

AU - Zygmunt Pogorzały

TI - Left-sided quasi-invertible bimodules over Nakayama algebras

JO - Open Mathematics

PY - 2005

VL - 3

IS - 1

SP - 125

EP - 142

AB - Bimodules over triangular Nakayama algebras that give stable equivalences of Morita type are studied here. As a consequence one obtains that every stable equivalence of Morita type between triangular Nakayama algebras is a Morita equivalence.

LA - eng

KW - 16D20; 16G20

UR - http://eudml.org/doc/268743

ER -

## References

top- [1] M. Auslander and I. Reiten: “On a Theorem of E. Green on the Dual of the Transpose”, Proc. ICRA V, CMS Conf. Proc., Vol. 11, (1991), pp. 53–65.
- [2] M. Broué: “Equivalences of Blocks of Group Algebras”, In: V. Dlab and L.L. Scott (Eds.): Finite Dimensional Algebras and Related Topics, NATO ASI Series C, Vol. 424, Kluwer Academic Press, Dodrecht, 1992, pp. 1–26.
- [3] P. Gabriel: Auslander-Reiten sequences and representation-finite algebras, Springer Lecture Notes in Math., Vol. 831, Berlin, 1980, pp. 1–71. http://dx.doi.org/10.1007/BFb0089778 Zbl0445.16023
- [4] D. Happel: “Hochschild cohomology of finite-dimensional algebras”, In: Seminaire d’Algebre P. Dubriel et M-P. Maliavin, Lecture Notes in Math., Vol. 1404, Springer, Berlin, 1989, pp. 108–126.
- [5] S. MacLane: Homology, Springer-Verlag, Berlin, 1963.
- [6] K. Morita: “Duality for modules and its applications to the theory of rings with minimum condition”, Sci. Rep. Tokyo Kyoiku Daigaku Sec. A, Vol. 6, (1958), pp. 83–142.
- [7] Z. Pogorzały: “Algebras stably equivalent to selfinjective special biserial algebras”, Comm. Algebra, Vol. 22, (1994), pp. 1127–1160. Zbl0805.16008
- [8] Z. Pogorzały: “Left-right projective bimodules and stable equivalence of Morita type”, Colloq. Math., Vol. 88(2), (2001), pp. 243–255. Zbl0985.16004
- [9] Z. Pogorzały and A. Skowroński: “On algebras whose indecomposable modules are multiplicity-free”, Proc. London Math. Soc., Vol. 47, (1983), pp. 463–479. Zbl0559.16016
- [10] J. Rickard: “Derived equivalences as derived functors”, J. London. Math. Soc., Vol. 2(43), (1991), pp. 37–48. Zbl0683.16030
- [11] J. Rickard: “Some Recent Advances in Modular Representation Theory”, Proc. ICRA VIII, CMS Conf. Proc., Vol. 23, (1998), pp. 157–178. Zbl0914.20010
- [12] C.M. Ringel: Tame Algebras and Integral Quadratic Forms, Springer Lecture Notes in Math., Vol. 1099, Berlin, 1984.
- [13] D. Simson: Linear Representations of Partially Ordered Sets and Vector Space Categories, Gordon & Breach Science Publishers, Amsterdam, 1992. Zbl0818.16009

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.