On generalized M-projectively recurrent manifolds

Uday Chand De; Prajjwal Pal

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica (2014)

  • Volume: 13, Issue: 1, page 77-101
  • ISSN: 2300-133X

Abstract

top
The purpose of the present paper is to study generalized M-projectively recurrent manifolds. Some geometric properties of generalized M projectively recurrent manifolds have been studied under certain curvature conditions. An application of such a manifold in the theory of relativity has also been shown. Finally, we give an example of a generalized M-projectively recurrent manifold.

How to cite

top

Uday Chand De, and Prajjwal Pal. "On generalized M-projectively recurrent manifolds." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 13.1 (2014): 77-101. <http://eudml.org/doc/268744>.

@article{UdayChandDe2014,
abstract = {The purpose of the present paper is to study generalized M-projectively recurrent manifolds. Some geometric properties of generalized M projectively recurrent manifolds have been studied under certain curvature conditions. An application of such a manifold in the theory of relativity has also been shown. Finally, we give an example of a generalized M-projectively recurrent manifold.},
author = {Uday Chand De, Prajjwal Pal},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
keywords = {-projectively recurrent manifolds; relativity},
language = {eng},
number = {1},
pages = {77-101},
title = {On generalized M-projectively recurrent manifolds},
url = {http://eudml.org/doc/268744},
volume = {13},
year = {2014},
}

TY - JOUR
AU - Uday Chand De
AU - Prajjwal Pal
TI - On generalized M-projectively recurrent manifolds
JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY - 2014
VL - 13
IS - 1
SP - 77
EP - 101
AB - The purpose of the present paper is to study generalized M-projectively recurrent manifolds. Some geometric properties of generalized M projectively recurrent manifolds have been studied under certain curvature conditions. An application of such a manifold in the theory of relativity has also been shown. Finally, we give an example of a generalized M-projectively recurrent manifold.
LA - eng
KW - -projectively recurrent manifolds; relativity
UR - http://eudml.org/doc/268744
ER -

References

top
  1. [1] T. Adati, T. Miyazawa, On Riemannian space with recurrent conformal curvature, Tensor (N.S.)18 (1967), 348-354. Cited on 77. Zbl0152.39103
  2. [2] K. Arslan, U.C. De, C. Murathan, A. Yildiz, On generalized recurrent Riemannian manifolds, Acta Math. Hungar. 123 (2009), no. 1-2, 27-39. Cited on 78.[WoS] Zbl1199.53166
  3. [3] R.L. Bishop, B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49. Cited on 92.[Crossref] Zbl0191.52002
  4. [4] E. Cartan, Sur une classe remarquable d’espaces de Riemann, Bull. Soc. Math. France 54 (1926), 214-264. Cited on 77. Zbl53.0390.01
  5. [5] M.C. Chaki, Some theorems on recurrent and Ricci-recurrent spaces, Rend. Sem. Mat. Univ. Padova 26 (1956), 168-176. Cited on 78. Zbl0075.17501
  6. [6] M.C. Chaki, B. Gupta, On conformally symmetric spaces, Indian J. Math. 5 (1963), 113-122. Cited on 77. Zbl0122.39902
  7. [7] M.C. Chaki,On pseudo symmetric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 33 (1987), no. 1, 53-58. Cited on 77. 
  8. [8] S.K. Chaubey, R.H. Ojha, On the m-projective curvature tensor of a Kenmotsu manifold Differ. Geom. Dyn. Syst. 12 (2010), 52-60. Cited on 79. Zbl1200.53028
  9. [9] S.K. Chaubey, On weakly m-projectively symmetric manifolds, Novi Sad J. Math. 42 (2012), no. 1, 67-79. Cited on 79. Zbl1313.53060
  10. [10] U.C. De, A.K. Gazi, On generalized concircularly recurrent manifolds, Studia Sci. Math. Hungar. 46 (2009), no. 2, 287-296. Cited on 79. Zbl1274.53026
  11. [11] U.C. De, N. Guha, On generalised recurrent manifolds, Proc. Math. Soc. 7 (1991), 7-11. Cited on 78. Zbl0758.53008
  12. [12] U.C. De, N. Guha, D. Kamilya, On generalized Ricci-recurrent manifolds, Tensor (N.S.) 56 (1995), no. 3, 312-317. Cited on 78. Zbl0859.53009
  13. [13] U.C. De, S. Mallick, Spacetimes admitting M-projective curvature tensor, Bulg. J. Phys. 39 (2012), no. 4, 331-338. Cited on 79. 
  14. [14] L.P. Eisenhart, Riemannian Geometry, 2d printing, Princeton University Press, Princeton, N. J., 1949. Cited on 84. 
  15. [15] D. Ghosh, On projective recurrent spaces of second order, Acad. Roy. Belg. Bull. Cl. Sci. (5) 56 (1970) 1093-1099. Cited on 77. Zbl0216.43901
  16. [16] M. Hotlos, On conformally symmetric warped products, Ann. Acad. Pedagog. Crac. Stud. Math. 4 (2004), 75-85. Cited on 93. Zbl1131.53303
  17. [17] G.I. Kruckovic, On semireducible Riemannian spaces (Russian), Dokl. Akad. Nauk SSSR (N.S.) 115 (1957), 862-865. Cited on 92. 
  18. [18] A. Lichnerowicz, Courbure, nombres de Betti, et espaces symétriques (French), Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 2, pp. 216-223. Amer. Math. Soc., Providence, R. I., 1952. Cited on 77. 
  19. [19] S. Mallick, A. De, U.C. De, On generalized Ricci recurrent manifolds with applications to relativity, Proc. Nat. Acad. Sci. India Sect. A 83 (2013), no. 2, 143-152. Cited on 78. Zbl1325.53061
  20. [20] C.A. Mantica, Y.J. Suh, Conformally symmetric manifolds and quasi conformally recurrent Riemannian manifolds, Balkan J. Geom. Appl. 16 (2011), no. 1, 66-77. Cited on 79. Zbl1226.53007
  21. [21] N. Mazumder, R. Biswas, S. Chakraborty, Cosmological evolution across phantom crossing and the nature of the horizons, Astrophys Space Sci 334 (2011), 183-186. Cited on 96.[WoS] Zbl1237.83047
  22. [22] B. O’Neill, Semi-Riemannian geometry. With applications to relativity, Pure and Applied Mathematics, 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. Cited on 77 and 95. 
  23. [23] C. Özgür, On generalized recurrent Kenmotsu manifolds, World Appl. Sci. J.2 (2007), no. 1, 9-33. Cited on 78. 
  24. [24] C. Özgür, On generalized recurrent contact metric manifolds, Indian J. Math. 50 (2008), no. 1, 11-19. Cited on 78. Zbl1145.53063
  25. [25] C. Özgür, On generalized recurrent Lorentzian para-Sasakian manifolds, Int. J. Appl. Math. Stat. 13 (2008), No. D08, 92-97. Cited on 78. 
  26. [26] E.M. Patterson, Some theorems on Ricci-recurrent spaces, J. London Math. Soc. 27 (1952), 287-295. Cited on 77 and 78.[Crossref] Zbl0048.15604
  27. [27] G.P. Pokhariyal, R.S. Mishra, Curvature tensors and their relativistic significance. II, Yokohama Math. J. 19 (1971), no. 2, 97-103. Cited on 79. Zbl0229.53026
  28. [28] N. Prakash, A note on Ricci-recurrent and recurrent spaces Bull. Calcutta Math. Soc. 54 (1962) 1-7. Cited on 78. Zbl0121.38602
  29. [29] W. Roter, On conformally symmetric Ricci-recurrent spaces Colloq. Math. 31 (1974), 87-96. Cited on 77 and 78. Zbl0292.53014
  30. [30] H.S. Ruse, A classification of K*-spaces, Proc. London Math. Soc. (2) 53 (1951), 212-229. Cited on 78.[Crossref] 
  31. [31] R.K. Sachs, H. Wu, General relativity for mathematicians, Graduate Texts in Mathematics, Vol. 48, Springer-Verlag, New York-Heidelberg, 1977. Cited on 95. Zbl0373.53001
  32. [32] J.A. Schouten, Ricci-calculus. An introduction to tensor analysis and its geometrical applications, 2d. ed., Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd X. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1954. Cited on 86 and 88. 
  33. [33] J.P. Singh, On m-projective recurrent Riemannian manifold (English summary), Int. J. Math. Anal. (Ruse) 6 (2012), no. 21-24, 1173-1178. Cited on 79. Zbl1273.53024
  34. [34] R.N. Singh, S.K. Pandey, On the m-projective curvature tensor of generalized Sasakian space forms, to appear in Bull. Math. Anal. Appl. Cited on 79. 
  35. [35] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Hertl, Exact solutions of Einstein’s field equations. Second edition, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2003. Cited on 96. Zbl1057.83004
  36. [36] A.G. Walker, On Ruse’s spaces of recurrent curvature, Proc. London Math. Soc. (2) 52 (1950), 36-64. Cited on 77 and 78.[Crossref] Zbl0039.17702
  37. [37] S. Yamaguchi, M. Matsumoto, On Ricci-recurrent spaces, Tensor (N.S.) 19 (1968), 64-68. Cited on 78. Zbl0168.19503
  38. [38] K. Yano, M. Kon, Structures on manifolds, Series in Pure Mathematics 3, World Scientific Publishing Co., Singapore, 1984. Cited on 89 Zbl0557.53001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.