On characterization of Poisson and Jacobi structures

Janusz Grabowski; Paweŀ Urbański

Open Mathematics (2003)

  • Volume: 1, Issue: 1, page 123-140
  • ISSN: 2391-5455

Abstract

top
We characterize Poisson and Jacobi structures by means of complete lifts of the corresponding tensors: the lifts have to be related to canonical structures by morphisms of corresponding vector bundles. Similar results hold for generalized Poisson and Jacobi structures (canonical structures) associated with Lie algebroids and Jacobi algebroids.

How to cite

top

Janusz Grabowski, and Paweŀ Urbański. "On characterization of Poisson and Jacobi structures." Open Mathematics 1.1 (2003): 123-140. <http://eudml.org/doc/268760>.

@article{JanuszGrabowski2003,
abstract = {We characterize Poisson and Jacobi structures by means of complete lifts of the corresponding tensors: the lifts have to be related to canonical structures by morphisms of corresponding vector bundles. Similar results hold for generalized Poisson and Jacobi structures (canonical structures) associated with Lie algebroids and Jacobi algebroids.},
author = {Janusz Grabowski, Paweŀ Urbański},
journal = {Open Mathematics},
keywords = {17B62 17B66 53D10 53D17},
language = {eng},
number = {1},
pages = {123-140},
title = {On characterization of Poisson and Jacobi structures},
url = {http://eudml.org/doc/268760},
volume = {1},
year = {2003},
}

TY - JOUR
AU - Janusz Grabowski
AU - Paweŀ Urbański
TI - On characterization of Poisson and Jacobi structures
JO - Open Mathematics
PY - 2003
VL - 1
IS - 1
SP - 123
EP - 140
AB - We characterize Poisson and Jacobi structures by means of complete lifts of the corresponding tensors: the lifts have to be related to canonical structures by morphisms of corresponding vector bundles. Similar results hold for generalized Poisson and Jacobi structures (canonical structures) associated with Lie algebroids and Jacobi algebroids.
LA - eng
KW - 17B62 17B66 53D10 53D17
UR - http://eudml.org/doc/268760
ER -

References

top
  1. [1] [Co] T. J. Courant: Tangent Dirac structures, J. Phys. A: Math. Gen., 23 (1990), 5153–5160. http://dx.doi.org/10.1088/0305-4470/23/22/010 
  2. [2] [Gr] J. Grabowski: Abstract Jacobi and Poisson structures, J. Geom. Phys., 9 (1992), 45–73. http://dx.doi.org/10.1016/0393-0440(92)90025-V 
  3. [3] [GL] F. Guédira, A. Lichnerowicz: Géométrie des algébres de Lie locales de Kirillov, J. Math. pures et appl., 63 (1984), 407–484. 
  4. [4] [GM] J. Grabowski and G. Marmo: Jacobi structures revisited, J. Phys. A: Math. Gen., 34 (2001), 10975–10990. http://dx.doi.org/10.1088/0305-4470/34/49/316 
  5. [5] [GM1] J. Grabowski and G. Marmo: The graded Jacobi algebras and (co)homology, J. Phys. A: Math. Gen., 36 (2003), 161–181. http://dx.doi.org/10.1088/0305-4470/36/1/311 
  6. [6] [GU] J. Grabowski, P. Urbański: Tangent lifts of Poisson and related structures, J. Phys. A: Math. Gen., 28 (1995), 6743–6777. http://dx.doi.org/10.1088/0305-4470/28/23/024 Zbl0872.58028
  7. [7] [GUO] J. Grabowski and P. Urbański: Tangent and cotangent lifts and graded Lie algebras associated with Lie algebroids, Ann. Global Anal. Geom. 15 (1997), 447–486. http://dx.doi.org/10.1023/A:1006519730920 Zbl0973.58006
  8. [8] [GU1] J. Grabowski and P. Urbański: Lie algebroids and Poisson-Nijenhuis structures, Rep. Math. Phys., 40 (1997), 195–208. http://dx.doi.org/10.1016/S0034-4877(97)85916-2 Zbl1005.53061
  9. [9] [GU2] J. Grabowski and P. Urbański: Algebroids-general differential calculi on vector bundles, J. Geom. Phys., 31 (1999), 111–141. http://dx.doi.org/10.1016/S0393-0440(99)00007-8 Zbl0954.17014
  10. [10] [IM] D. Iglesias and J.C. Marrero: Some linear Jacobi structures on vector bundles, C.R. Acad. Sci. Paris, 331 Sér. I. (2000), 125–130. 
  11. [11] [IM1] D. Iglesias and J.C. Marrero: Generalized Lie bialgebroids and Jacobi structures, J. Geom. Phys., 40 (2001), 176–1999. http://dx.doi.org/10.1016/S0393-0440(01)00032-8 
  12. [12] [IY] S. Ishihara and K. Yano: Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York 1973. 
  13. [13] [KSB] Y. Kerbrat and Z. Souici-Benhammadi: Variétés de Jacobi et groupoïdes de contact, C. R. Acad. Sci. Paris, Sér. I, 317 (1993), 81–86. 
  14. [14] [Ki] A. Kirillov: Local Lie algebras, Russian Math. Surveys, 31 (1976), 55–75. http://dx.doi.org/10.1070/RM1976v031n04ABEH001556 
  15. [15] [KS] Y. Kosmann-Schwarzbach: Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math., 41 (1995), 153–165. http://dx.doi.org/10.1007/BF00996111 Zbl0837.17014
  16. [16] [KSM] Y. Kosmann-Schwarzbach and F. Magri: Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré, A53 (1990), 35–81. 
  17. [17] [Li] A. Lichnerowicz: Les variétés de Jacobi et leurs algébres de Lie associées, J. Math. Pures Appl., 57 (1978), 453–488. Zbl0407.53025
  18. [18] [Ma] K. Mackenzie: Lie groupoids and Lie algebroids in differential geometry, Cambridge University Press, 1987. 
  19. [19] [MX] K. Mackenzie, P. Xu: Lie bialgebroids and Poisson groupoids, Duke Math. J., 73, (1994), 415–452. http://dx.doi.org/10.1215/S0012-7094-94-07318-3 Zbl0844.22005
  20. [20] [MX1] K. Mackenzie, P. Xu: Classical lifting processes and multiplicative vector fields, Quarterly J. Math. Oxford, 49 (1998), 59–85. http://dx.doi.org/10.1093/qjmath/49.193.59 Zbl0926.58015
  21. [21] [MMP] J. C. Marrero, J. Monterde and E. Padron: Jacobi-Nijenhuis manifolds and compatible Jacobi structures, C. R. Acad. Sci. Paris, 329, Sér. I (1999), 797–802. Zbl0949.37056
  22. [22] [Va] I. Vaisman: The BV-algebra of a Jacobi manifold, Ann. Polon. Math., 73 (2000), 275–290. Zbl0989.53050
  23. [23] [Wi] E. Witten: Supersymmetry and Morse theory, J. Diff. Geom., 17 (1982), 661–692. Zbl0499.53056

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.