On characterization of Poisson and Jacobi structures
Janusz Grabowski; Paweŀ Urbański
Open Mathematics (2003)
- Volume: 1, Issue: 1, page 123-140
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topJanusz Grabowski, and Paweŀ Urbański. "On characterization of Poisson and Jacobi structures." Open Mathematics 1.1 (2003): 123-140. <http://eudml.org/doc/268760>.
@article{JanuszGrabowski2003,
abstract = {We characterize Poisson and Jacobi structures by means of complete lifts of the corresponding tensors: the lifts have to be related to canonical structures by morphisms of corresponding vector bundles. Similar results hold for generalized Poisson and Jacobi structures (canonical structures) associated with Lie algebroids and Jacobi algebroids.},
author = {Janusz Grabowski, Paweŀ Urbański},
journal = {Open Mathematics},
keywords = {17B62 17B66 53D10 53D17},
language = {eng},
number = {1},
pages = {123-140},
title = {On characterization of Poisson and Jacobi structures},
url = {http://eudml.org/doc/268760},
volume = {1},
year = {2003},
}
TY - JOUR
AU - Janusz Grabowski
AU - Paweŀ Urbański
TI - On characterization of Poisson and Jacobi structures
JO - Open Mathematics
PY - 2003
VL - 1
IS - 1
SP - 123
EP - 140
AB - We characterize Poisson and Jacobi structures by means of complete lifts of the corresponding tensors: the lifts have to be related to canonical structures by morphisms of corresponding vector bundles. Similar results hold for generalized Poisson and Jacobi structures (canonical structures) associated with Lie algebroids and Jacobi algebroids.
LA - eng
KW - 17B62 17B66 53D10 53D17
UR - http://eudml.org/doc/268760
ER -
References
top- [1] [Co] T. J. Courant: Tangent Dirac structures, J. Phys. A: Math. Gen., 23 (1990), 5153–5160. http://dx.doi.org/10.1088/0305-4470/23/22/010
- [2] [Gr] J. Grabowski: Abstract Jacobi and Poisson structures, J. Geom. Phys., 9 (1992), 45–73. http://dx.doi.org/10.1016/0393-0440(92)90025-V
- [3] [GL] F. Guédira, A. Lichnerowicz: Géométrie des algébres de Lie locales de Kirillov, J. Math. pures et appl., 63 (1984), 407–484.
- [4] [GM] J. Grabowski and G. Marmo: Jacobi structures revisited, J. Phys. A: Math. Gen., 34 (2001), 10975–10990. http://dx.doi.org/10.1088/0305-4470/34/49/316
- [5] [GM1] J. Grabowski and G. Marmo: The graded Jacobi algebras and (co)homology, J. Phys. A: Math. Gen., 36 (2003), 161–181. http://dx.doi.org/10.1088/0305-4470/36/1/311
- [6] [GU] J. Grabowski, P. Urbański: Tangent lifts of Poisson and related structures, J. Phys. A: Math. Gen., 28 (1995), 6743–6777. http://dx.doi.org/10.1088/0305-4470/28/23/024 Zbl0872.58028
- [7] [GUO] J. Grabowski and P. Urbański: Tangent and cotangent lifts and graded Lie algebras associated with Lie algebroids, Ann. Global Anal. Geom. 15 (1997), 447–486. http://dx.doi.org/10.1023/A:1006519730920 Zbl0973.58006
- [8] [GU1] J. Grabowski and P. Urbański: Lie algebroids and Poisson-Nijenhuis structures, Rep. Math. Phys., 40 (1997), 195–208. http://dx.doi.org/10.1016/S0034-4877(97)85916-2 Zbl1005.53061
- [9] [GU2] J. Grabowski and P. Urbański: Algebroids-general differential calculi on vector bundles, J. Geom. Phys., 31 (1999), 111–141. http://dx.doi.org/10.1016/S0393-0440(99)00007-8 Zbl0954.17014
- [10] [IM] D. Iglesias and J.C. Marrero: Some linear Jacobi structures on vector bundles, C.R. Acad. Sci. Paris, 331 Sér. I. (2000), 125–130.
- [11] [IM1] D. Iglesias and J.C. Marrero: Generalized Lie bialgebroids and Jacobi structures, J. Geom. Phys., 40 (2001), 176–1999. http://dx.doi.org/10.1016/S0393-0440(01)00032-8
- [12] [IY] S. Ishihara and K. Yano: Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York 1973.
- [13] [KSB] Y. Kerbrat and Z. Souici-Benhammadi: Variétés de Jacobi et groupoïdes de contact, C. R. Acad. Sci. Paris, Sér. I, 317 (1993), 81–86.
- [14] [Ki] A. Kirillov: Local Lie algebras, Russian Math. Surveys, 31 (1976), 55–75. http://dx.doi.org/10.1070/RM1976v031n04ABEH001556
- [15] [KS] Y. Kosmann-Schwarzbach: Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math., 41 (1995), 153–165. http://dx.doi.org/10.1007/BF00996111 Zbl0837.17014
- [16] [KSM] Y. Kosmann-Schwarzbach and F. Magri: Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré, A53 (1990), 35–81.
- [17] [Li] A. Lichnerowicz: Les variétés de Jacobi et leurs algébres de Lie associées, J. Math. Pures Appl., 57 (1978), 453–488. Zbl0407.53025
- [18] [Ma] K. Mackenzie: Lie groupoids and Lie algebroids in differential geometry, Cambridge University Press, 1987.
- [19] [MX] K. Mackenzie, P. Xu: Lie bialgebroids and Poisson groupoids, Duke Math. J., 73, (1994), 415–452. http://dx.doi.org/10.1215/S0012-7094-94-07318-3 Zbl0844.22005
- [20] [MX1] K. Mackenzie, P. Xu: Classical lifting processes and multiplicative vector fields, Quarterly J. Math. Oxford, 49 (1998), 59–85. http://dx.doi.org/10.1093/qjmath/49.193.59 Zbl0926.58015
- [21] [MMP] J. C. Marrero, J. Monterde and E. Padron: Jacobi-Nijenhuis manifolds and compatible Jacobi structures, C. R. Acad. Sci. Paris, 329, Sér. I (1999), 797–802. Zbl0949.37056
- [22] [Va] I. Vaisman: The BV-algebra of a Jacobi manifold, Ann. Polon. Math., 73 (2000), 275–290. Zbl0989.53050
- [23] [Wi] E. Witten: Supersymmetry and Morse theory, J. Diff. Geom., 17 (1982), 661–692. Zbl0499.53056
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.