Starlike functions of complex order involving q-hypergeometric functions with fixed point
Kaliappan Vijaya; Gangadharan Murugusundaramoorthy; Murugesan Kasthuri
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica (2014)
- Volume: 13, page 51-63
- ISSN: 2300-133X
Access Full Article
topAbstract
topHow to cite
topKaliappan Vijaya, Gangadharan Murugusundaramoorthy, and Murugesan Kasthuri. "Starlike functions of complex order involving q-hypergeometric functions with fixed point." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 13 (2014): 51-63. <http://eudml.org/doc/268762>.
@article{KaliappanVijaya2014,
abstract = {Recently Kanas and Ronning introduced the classes of starlike and convex functions, which are normalized with ƒ(ξ) = ƒ0(ξ) − 1 = 0, ξ (|ξ| = d) is a fixed point in the open disc U = \{z ∈ ℂ: |z| < 1\}. In this paper we define a new subclass of starlike functions of complex order based on q-hypergeometric functions and continue to obtain coefficient estimates, extreme points, inclusion properties and neighbourhood results for the function class T Sξ(α, β,γ). Further, we obtain integral means inequalities for the function ƒ ∈ T Sξ(α, β,γ).},
author = {Kaliappan Vijaya, Gangadharan Murugusundaramoorthy, Murugesan Kasthuri},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
keywords = {starlike functions, convex functions},
language = {eng},
pages = {51-63},
title = {Starlike functions of complex order involving q-hypergeometric functions with fixed point},
url = {http://eudml.org/doc/268762},
volume = {13},
year = {2014},
}
TY - JOUR
AU - Kaliappan Vijaya
AU - Gangadharan Murugusundaramoorthy
AU - Murugesan Kasthuri
TI - Starlike functions of complex order involving q-hypergeometric functions with fixed point
JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY - 2014
VL - 13
SP - 51
EP - 63
AB - Recently Kanas and Ronning introduced the classes of starlike and convex functions, which are normalized with ƒ(ξ) = ƒ0(ξ) − 1 = 0, ξ (|ξ| = d) is a fixed point in the open disc U = {z ∈ ℂ: |z| < 1}. In this paper we define a new subclass of starlike functions of complex order based on q-hypergeometric functions and continue to obtain coefficient estimates, extreme points, inclusion properties and neighbourhood results for the function class T Sξ(α, β,γ). Further, we obtain integral means inequalities for the function ƒ ∈ T Sξ(α, β,γ).
LA - eng
KW - starlike functions, convex functions
UR - http://eudml.org/doc/268762
ER -
References
top- [1] Md. Aabed, M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik 65 (2013), no. 4, 454-465. Cited on 52 and 53.
- [2] O. Altintas, O. Ozkan, H.M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett. 13 (2000), no. 3, 63-67. Cited on 53.[Crossref]
- [3] M.K. Aouf, A. Shamandy, A.O. Mostafa, S. Madian, A subclass of M-W-starlike functions, Univ. Apulensis Math. Inform. No. 21 (2010), 135-142. Cited on 53.
- [4] S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969) 429-446. Cited on 53.[Crossref]
- [5] B.C. Carlson, S.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), no. 4, 737-745. Cited on 53.[Crossref]
- [6] J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), no. 1, 1-13. Cited on 53.[Crossref]
- [7] J. Dziok, H.M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003), no. 1, 7-18. Cited on 53.
- [8] A.W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601. Cited on 52.[Crossref]
- [9] S. Kanas, F. Rønning, Uniformly starlike and convex functions and other related classes of univalent functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 53 (1999), 95-105. Cited on 52.
- [10] R.J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965) 755-758. Cited on 52 and 53.[Crossref]
- [11] R.J. Libera, Univalent -spiral functions, Canad. J. Math. 19 (1967) 449-456.Cited on 54.[Crossref]
- [12] J.E. Littlewood, On inequalities in theory of functions, Proc. Lond. Math. Soc. 23 (1925), 481-519. Cited on 59.[Crossref]
- [13] A.E. Livingston, On the radius of univalence of certain analytic functions, Proc.Amer. Math. Soc. 17 (1966) 352-357. Cited on 53.[Crossref]
- [14] G. Murugusundaramoorthy, H.M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, JIPAM. J. Inequal. Pure Appl. Math. 5 (2004), no. 2, Article 24, 8 pp. Cited on 53 and 60.
- [15] S.D. Purohit, R.K. Raina, Certain subclasses of analytic functions associated with fractional q-calculus operators, Math. Scand. 109 (2011), no. 1, 55-70. Cited on52.
- [16] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115. Cited on 53.[Crossref]
- [17] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), no. 4, 521-527. Cited on 60.[Crossref]
- [18] L. Špacek, Príspẽvek, k teorii funkci prostých, Casopis Pest. Math. 63 (1933), 12-19. Cited on 54.
- [19] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math.Soc. 51 (1975), 109-116. Cited on 52 and 56.[Crossref]
- [20] H. Silverman, Integral means for univalent functions with negative coefficients, Houston J. Math. 23 (1997), no. 1, 169-174. Cited on 59.
- [21] H.M. Srivastava, S. Owa, A note on certain subclasses of spiral-like functions, Rend. Sem. Mat. Univ. Padova 80 (1988), 17-24. Cited on 54.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.