The Dirichlet problem for Baire-one functions

Jiří Spurný

Open Mathematics (2004)

  • Volume: 2, Issue: 2, page 260-271
  • ISSN: 2391-5455

Abstract

top
Let X be a compact convex set and let ext X stand for the set of all extreme points of X. We characterize those bounded function defined on ext X which can be extended to an affine Baire-one function on the whole set X.

How to cite

top

Jiří Spurný. "The Dirichlet problem for Baire-one functions." Open Mathematics 2.2 (2004): 260-271. <http://eudml.org/doc/268765>.

@article{JiříSpurný2004,
abstract = {Let X be a compact convex set and let ext X stand for the set of all extreme points of X. We characterize those bounded function defined on ext X which can be extended to an affine Baire-one function on the whole set X.},
author = {Jiří Spurný},
journal = {Open Mathematics},
keywords = {46A55; 26A21},
language = {eng},
number = {2},
pages = {260-271},
title = {The Dirichlet problem for Baire-one functions},
url = {http://eudml.org/doc/268765},
volume = {2},
year = {2004},
}

TY - JOUR
AU - Jiří Spurný
TI - The Dirichlet problem for Baire-one functions
JO - Open Mathematics
PY - 2004
VL - 2
IS - 2
SP - 260
EP - 271
AB - Let X be a compact convex set and let ext X stand for the set of all extreme points of X. We characterize those bounded function defined on ext X which can be extended to an affine Baire-one function on the whole set X.
LA - eng
KW - 46A55; 26A21
UR - http://eudml.org/doc/268765
ER -

References

top
  1. [1] E.M. Alfsen: Compact convex sets and boundary integrals, Springer-Verlag, New York-Heidelberg, 1971. 
  2. [2] E.M. Alfsen: “Boundary values for homomorphisms of compact convex sets”, Acta Math., Vol. 120, (1968), pp. 149–159. http://dx.doi.org/10.1007/BF02394608 
  3. [3] E.M. Alfsen: “On the Dirichlet problem on the Choquet boundary”, Math. Scand., Vol. 19, (1965), pp. 113–121. 
  4. [4] N. Boboc and A. Cornea: “Convex cones of lower semicontinuous functions on compact spaces”, Rev. Roumaine Math. Pures Appl., Vol. 12, (1967), pp. 471–525. Zbl0155.17301
  5. [5] G. Choquet: Lectures on analysis I–III., W.A. Benjamin Inc., New York-Amsterdam, 1969. 
  6. [6] G. Choquet: “Remarque à propos de la démonstration de l'unicité de P.A. Meyer”, Séminaire Brelot-Choquet-Deny (Théorie de Potentiel), Vol. 8, (1961/62) 6 année. 
  7. [7] E.G. Effros: “Structure in simplexes II.”, J. Funct. Anal., Vol. 1, (1967), pp. 361–391. http://dx.doi.org/10.1016/0022-1236(67)90008-0 Zbl0179.17302
  8. [8] E. Hewitt and K. Stromberg: Real and abstract analysis, Springer-Verlag, New York-Berlin, 1969. Zbl0225.26001
  9. [9] A. Lazar: “Affine products of simplexes”, Math. Scand., Vol. 22, (1968), pp. 165–175. Zbl0176.42803
  10. [10] J. Lukeš, J. Malý, I. Netuka, M. Smrčka and J. Spurný: “On approximation of affine Baire-one functions”, Israel Jour. Math., Vol. 134, (2003), pp. 255–289. Zbl1031.35011
  11. [11] J. Lukeš, T. Mocek, M. Smrčka and J. Spurný: “Choquet like sets in function spaces”, Bull. Sci. Math., Vol. 127, (2003), pp. 397–437. http://dx.doi.org/10.1016/S0007-4497(03)00042-3 Zbl1044.46009
  12. [12] J. Lukeš, J. Malý, and L. Zajíček: Fine topology methods in real analysis and potential theory, Lecture Notes in Math., Vol. 1189, Springer-Verlag, 1986. Zbl0607.31001
  13. [13] M. Rogalski: “Opérateurs de Lion, projecteurs boréliens et simplexes analytiques”, J. Funct. Anal., Vol. 2, (1968), pp. 458–488. http://dx.doi.org/10.1016/0022-1236(68)90005-0 Zbl0164.43403
  14. [14] J. Spurný: “On the Dirichlet problem for the functions of the first Baire class”, Comment. Math. Univ. Carolin., Vol. 42, (2001), pp. 721–728. Zbl1090.46500
  15. [15] J. Spurný: “Representation of abstract affine functions”, Real. Anal. Exchange, Vol. 28(2), (2002/2003), pp. 1–18. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.