An evaluation of the efficiency of plant protection products via nonlinear statistical methods – a simulation study

Ewa Skotarczak; Ewa Bakinowska; Kamila Tomaszyk

Biometrical Letters (2014)

  • Volume: 51, Issue: 2, page 171-179
  • ISSN: 1896-3811

Abstract

top
A nonlinear statistical approach was used to evaluate the efficiency of plant protection products. The methodology presented can be implemented when the observations in an experiment are recorded as success or failure. This occurs, for example, when following the application of a herbicide or pesticide, a single weed or insect is classified as alive (failure) or dead (success). Then a higher probability of success means a higher efficiency of the tested product. Using simulated data sets, a comparison was made of three methods based on the logit, probit and threshold models, with special attention to the effect of sample size and number of replications on the accuracy of the estimation of probabilities.

How to cite

top

Ewa Skotarczak, Ewa Bakinowska, and Kamila Tomaszyk. "An evaluation of the efficiency of plant protection products via nonlinear statistical methods – a simulation study." Biometrical Letters 51.2 (2014): 171-179. <http://eudml.org/doc/268766>.

@article{EwaSkotarczak2014,
abstract = {A nonlinear statistical approach was used to evaluate the efficiency of plant protection products. The methodology presented can be implemented when the observations in an experiment are recorded as success or failure. This occurs, for example, when following the application of a herbicide or pesticide, a single weed or insect is classified as alive (failure) or dead (success). Then a higher probability of success means a higher efficiency of the tested product. Using simulated data sets, a comparison was made of three methods based on the logit, probit and threshold models, with special attention to the effect of sample size and number of replications on the accuracy of the estimation of probabilities.},
author = {Ewa Skotarczak, Ewa Bakinowska, Kamila Tomaszyk},
journal = {Biometrical Letters},
keywords = {threshold model; logistic model; plant protection; simulated data},
language = {eng},
number = {2},
pages = {171-179},
title = {An evaluation of the efficiency of plant protection products via nonlinear statistical methods – a simulation study},
url = {http://eudml.org/doc/268766},
volume = {51},
year = {2014},
}

TY - JOUR
AU - Ewa Skotarczak
AU - Ewa Bakinowska
AU - Kamila Tomaszyk
TI - An evaluation of the efficiency of plant protection products via nonlinear statistical methods – a simulation study
JO - Biometrical Letters
PY - 2014
VL - 51
IS - 2
SP - 171
EP - 179
AB - A nonlinear statistical approach was used to evaluate the efficiency of plant protection products. The methodology presented can be implemented when the observations in an experiment are recorded as success or failure. This occurs, for example, when following the application of a herbicide or pesticide, a single weed or insect is classified as alive (failure) or dead (success). Then a higher probability of success means a higher efficiency of the tested product. Using simulated data sets, a comparison was made of three methods based on the logit, probit and threshold models, with special attention to the effect of sample size and number of replications on the accuracy of the estimation of probabilities.
LA - eng
KW - threshold model; logistic model; plant protection; simulated data
UR - http://eudml.org/doc/268766
ER -

References

top
  1. Bakinowska E., Kala R. (2007): An application of logistic models for comparison of varieties of seed pea with respect to lodging. Biometrical Letters 44(2): 143-154. 
  2. Bakinowska E., Pilarczyk W., Osiecka A., Wiatr K. (2012): Analysis of downy mildew infection of field pea varieties using the logistic model. Journal of Plant Protection Research 52(2): 264-270. 
  3. Burgos N.R., Tranel P.J., Streibig J.C., Davis V.M., Shaner D., Norsworthy J.K., Ritz C. (2013): Review: confirmation of resistance to herbicides and evaluation of resistance levels. Weed Science 61(1): 4-20.[Crossref] 
  4. Falconer D.S. (1960): Introduction to quantitative genetics. Ronald Press Co, New York. 
  5. Finney D.J. (1979): Bioassay and the practice of statistical inference. International Statistical Review 47(1): 1-12.[Crossref] Zbl0397.92002
  6. Moliński K., Szydłowski M., Szwaczkowski T., Dobek A., Skotarczak E. (2003): An algorithm for genetic variance estimation of reproductive traits under a threshold model. Archives of Animal Breeding 46(1): 85-91. 
  7. McCullagh P., Nelder J.A. (1989): Generalized linear models. 2nd. ed., Chapman and Hall, London. Zbl0744.62098
  8. Rao C.R., Toutenburg H. (1999): Linear Models. 2nd ed. Springer-Verlag, New York. Zbl0846.62049
  9. Ritz C., Pipper C.B., Strebig J.C. (2013): Analysis of germination data from agricultural experiments, European Journal of Agronomy 45: 1-6.[WoS][Crossref] 
  10. SAS Institute (1997): SAS/STAT software: Changes and enhancements through release 6.12. SAS Inst., Cary, NC, USA. 
  11. Sørensen D.A., Andersen S, Gianola D., Kørsgaard I. (1995): Bayesian inference in threshold models using Gibbs sampling. Genetics Selection Evolution 27: 229-249.[WoS][Crossref] 
  12. Sørensen D.A, Gianola D. (2002): Likelihood, Bayesian and MCMC methods in quantitative genetics. Springer-Verlag, New York. Zbl1013.62105
  13. Skotarczak E., Molińska A., Moliński K. (2002): Zastosowanie modelu progowego do oceny skuteczności działania wybranych herbicydów. Colloquium Biometryczne 32: 125-132. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.