Standard monomials for q-uniform families and a conjecture of Babai and Frankl
Open Mathematics (2003)
- Volume: 1, Issue: 2, page 198-207
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topGábor Hegedűs, and Lajos Rónyai. "Standard monomials for q-uniform families and a conjecture of Babai and Frankl." Open Mathematics 1.2 (2003): 198-207. <http://eudml.org/doc/268782>.
@article{GáborHegedűs2003,
abstract = {Let n, k, α be integers, n, α>0, p be a prime and q=p α. Consider the complete q-uniform family \[\mathcal \{F\}\left( \{k,q\} \right) = \left\lbrace \{K \subseteq \left[ n \right]:\left| K \right| \equiv k(mod q)\} \right\rbrace \]
We study certain inclusion matrices attached to F(k,q) over the field \[\mathbb \{F\}\_p \]
. We show that if l≤q−1 and 2l≤n then \[rank\_\{\mathbb \{F\}\_p \} I(\mathcal \{F\}(k,q),\left( \{\begin\{array\}\{*\{20\}c\} \{\left[ n \right]\} \\ \{ \leqslant \ell \} \\ \end\{array\} \} \right)) \leqslant \left( \{\begin\{array\}\{*\{20\}c\} n \\ \ell \\ \end\{array\} \} \right)\]
This extends a theorem of Frankl [7] obtained for the case α=1. In the proof we use arguments involving Gröbner bases, standard monomials and reduction. As an application, we solve a problem of Babai and Frankl related to the size of some L-intersecting families modulo q.},
author = {Gábor Hegedűs, Lajos Rónyai},
journal = {Open Mathematics},
keywords = {05D05; 13P10; 05B20},
language = {eng},
number = {2},
pages = {198-207},
title = {Standard monomials for q-uniform families and a conjecture of Babai and Frankl},
url = {http://eudml.org/doc/268782},
volume = {1},
year = {2003},
}
TY - JOUR
AU - Gábor Hegedűs
AU - Lajos Rónyai
TI - Standard monomials for q-uniform families and a conjecture of Babai and Frankl
JO - Open Mathematics
PY - 2003
VL - 1
IS - 2
SP - 198
EP - 207
AB - Let n, k, α be integers, n, α>0, p be a prime and q=p α. Consider the complete q-uniform family \[\mathcal {F}\left( {k,q} \right) = \left\lbrace {K \subseteq \left[ n \right]:\left| K \right| \equiv k(mod q)} \right\rbrace \]
We study certain inclusion matrices attached to F(k,q) over the field \[\mathbb {F}_p \]
. We show that if l≤q−1 and 2l≤n then \[rank_{\mathbb {F}_p } I(\mathcal {F}(k,q),\left( {\begin{array}{*{20}c} {\left[ n \right]} \\ { \leqslant \ell } \\ \end{array} } \right)) \leqslant \left( {\begin{array}{*{20}c} n \\ \ell \\ \end{array} } \right)\]
This extends a theorem of Frankl [7] obtained for the case α=1. In the proof we use arguments involving Gröbner bases, standard monomials and reduction. As an application, we solve a problem of Babai and Frankl related to the size of some L-intersecting families modulo q.
LA - eng
KW - 05D05; 13P10; 05B20
UR - http://eudml.org/doc/268782
ER -
References
top- [1] W.W. Adams and P. Loustaunau: An Introduction to Gröbner Bases, American Mathematical Society, 1994. Zbl0803.13015
- [2] R.P. Anstee, L. Rónyai, A. Sali: “Shattering news”, Graphs and Combinatorics, Vol. 18, (2002), pp. 59–73. http://dx.doi.org/10.1007/s003730200003 Zbl0990.05123
- [3] L. Babai and P. Frankl: Linear algebra methods in combinatorics, September 1992.
- [4] D.A. Barrington, R. Beigel, S. Rudich: “Representing boolean functions modulo composite numbers”, In: Proc. 24th Annual ACM Symposium on Theory of Computing, Victoria, BC, Canada, 1992, pp. 455–461. Zbl0829.68057
- [5] T. Becker and V. Weispfenning: Gröbner bases- a computational approach to commutative algebra, Springer-Verlag, Berlin, Heidelberg, 1993.
- [6] A.M. Cohen, H. Cuypers, H. Sterk (eds.): Some Tapas of Computer Algebra, Springer-Verlag, Berlin, Heidelberg, 1999. Zbl0924.13021
- [7] P. Frankl: “Intersection theorems and mod p rank of inclusion matrices”, J. Combin. Theory A, Vol. 54, (1990), pp. 85–94. http://dx.doi.org/10.1016/0097-3165(90)90007-J
- [8] K. Friedl and L. Rónyai: “Order-shattering and Wilson's theorem”, Discrete Mathematics, to appear. Zbl1023.05130
- [9] R.L. Graham, D.E. Knuth, O. Patashnik: Concrete Mathematics, Addison-Wesley, Reading, Massachusetts, 1989. Zbl0668.00003
- [10] G. Hegedűs and L. Rónyai: “Gröbner bases for complete uniform families”, J. of Algebraic Combinatorics, Vol. 17, (2003), pp. 171–180. http://dx.doi.org/10.1023/A:1022934815185 Zbl1045.13011
- [11] R.M. Wilson: “A diagonal form for the incidence matrices of t-subsets vs. k-subsets”, European Journal of Combinatorics, Vol. 11, (1990), pp. 609–615. Zbl0747.05016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.