Limit theorems for the Estermann zeta-function. II

Antanas Laurinčikas

Open Mathematics (2005)

  • Volume: 3, Issue: 4, page 580-590
  • ISSN: 2391-5455

Abstract

top
A limit theorem in the sense of the weak convergence of probability measures in the space of meromorphic functions for the Estermann zeta-function is obtained.

How to cite

top

Antanas Laurinčikas. "Limit theorems for the Estermann zeta-function. II." Open Mathematics 3.4 (2005): 580-590. <http://eudml.org/doc/268786>.

@article{AntanasLaurinčikas2005,
abstract = {A limit theorem in the sense of the weak convergence of probability measures in the space of meromorphic functions for the Estermann zeta-function is obtained.},
author = {Antanas Laurinčikas},
journal = {Open Mathematics},
keywords = {11M41},
language = {eng},
number = {4},
pages = {580-590},
title = {Limit theorems for the Estermann zeta-function. II},
url = {http://eudml.org/doc/268786},
volume = {3},
year = {2005},
}

TY - JOUR
AU - Antanas Laurinčikas
TI - Limit theorems for the Estermann zeta-function. II
JO - Open Mathematics
PY - 2005
VL - 3
IS - 4
SP - 580
EP - 590
AB - A limit theorem in the sense of the weak convergence of probability measures in the space of meromorphic functions for the Estermann zeta-function is obtained.
LA - eng
KW - 11M41
UR - http://eudml.org/doc/268786
ER -

References

top
  1. [1] P. Billingsley: Convergence of Probbility Measures, Wiley, New York, 1968. 
  2. [2] H. Bohr and B. Jessen: “Über die Wertverteilung der Riemannschen Zeta funktion”, Erste Mitteilung, Acta Math., Vol. 54, (1930), pp. 1–35. Zbl56.0287.01
  3. [3] H. Bohr and B. Jessen: “Über die Wertverteilung der Riemannschen Zeta funktion”, Zweite Mitteilung, Acta Math., Vol. 58, (1932), pp. 1–55. Zbl58.0321.02
  4. [4] J.B. Conway: Functions of One Complex Variable, Springer-Verlag, New York, 1973. 
  5. [5] J. Genys and A. Laurinčikas: “Value distribution of general Dirichlet series. IV”, Liet. Matem. Rink, Vol. 43, No. 3, (2003), pp. 342–358; Lith. Math. J., Vol. 42, No. e, (2003), pp. 281–294 (in Russian). Zbl1067.11056
  6. [6] A. Laurinčikas: Limit Theorems for the Riemann Zeta-function, Kluwer, Dordrecht, Boston, London, 1996. 
  7. [7] A. Laurinčikas and R. Garunkštis: The Lerch Zeta-Function, Kluwer, Dordrecht, Boston, London, 2002. Zbl1028.11052
  8. [8] A. Laurinčikas: “Limit theorems for the Estermann zeta-function. I”, Satist. Probab. Letters, Vol. 72(3), (2005), pp. 227–235. http://dx.doi.org/10.1016/j.spl.2004.11.024 Zbl1121.11059
  9. [9] M. Loève: Probability Theory, Van Nostrand, Toronto, 1955. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.