Limit theorems for the Estermann zeta-function. II
Open Mathematics (2005)
- Volume: 3, Issue: 4, page 580-590
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAntanas Laurinčikas. "Limit theorems for the Estermann zeta-function. II." Open Mathematics 3.4 (2005): 580-590. <http://eudml.org/doc/268786>.
@article{AntanasLaurinčikas2005,
abstract = {A limit theorem in the sense of the weak convergence of probability measures in the space of meromorphic functions for the Estermann zeta-function is obtained.},
author = {Antanas Laurinčikas},
journal = {Open Mathematics},
keywords = {11M41},
language = {eng},
number = {4},
pages = {580-590},
title = {Limit theorems for the Estermann zeta-function. II},
url = {http://eudml.org/doc/268786},
volume = {3},
year = {2005},
}
TY - JOUR
AU - Antanas Laurinčikas
TI - Limit theorems for the Estermann zeta-function. II
JO - Open Mathematics
PY - 2005
VL - 3
IS - 4
SP - 580
EP - 590
AB - A limit theorem in the sense of the weak convergence of probability measures in the space of meromorphic functions for the Estermann zeta-function is obtained.
LA - eng
KW - 11M41
UR - http://eudml.org/doc/268786
ER -
References
top- [1] P. Billingsley: Convergence of Probbility Measures, Wiley, New York, 1968.
- [2] H. Bohr and B. Jessen: “Über die Wertverteilung der Riemannschen Zeta funktion”, Erste Mitteilung, Acta Math., Vol. 54, (1930), pp. 1–35. Zbl56.0287.01
- [3] H. Bohr and B. Jessen: “Über die Wertverteilung der Riemannschen Zeta funktion”, Zweite Mitteilung, Acta Math., Vol. 58, (1932), pp. 1–55. Zbl58.0321.02
- [4] J.B. Conway: Functions of One Complex Variable, Springer-Verlag, New York, 1973.
- [5] J. Genys and A. Laurinčikas: “Value distribution of general Dirichlet series. IV”, Liet. Matem. Rink, Vol. 43, No. 3, (2003), pp. 342–358; Lith. Math. J., Vol. 42, No. e, (2003), pp. 281–294 (in Russian). Zbl1067.11056
- [6] A. Laurinčikas: Limit Theorems for the Riemann Zeta-function, Kluwer, Dordrecht, Boston, London, 1996.
- [7] A. Laurinčikas and R. Garunkštis: The Lerch Zeta-Function, Kluwer, Dordrecht, Boston, London, 2002. Zbl1028.11052
- [8] A. Laurinčikas: “Limit theorems for the Estermann zeta-function. I”, Satist. Probab. Letters, Vol. 72(3), (2005), pp. 227–235. http://dx.doi.org/10.1016/j.spl.2004.11.024 Zbl1121.11059
- [9] M. Loève: Probability Theory, Van Nostrand, Toronto, 1955.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.