On the gluing of hyperconvex metrics and diversities
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica (2014)
- Volume: 13, page 65-76
- ISSN: 2300-133X
Access Full Article
topAbstract
topHow to cite
topBożena Piątek. "On the gluing of hyperconvex metrics and diversities." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 13 (2014): 65-76. <http://eudml.org/doc/268795>.
@article{BożenaPiątek2014,
abstract = {In this work we consider two hyperconvex diversities (or hyperconvex metric spaces) (X, δX) and (Y, δY ) with nonempty intersection and we wonder whether there is a natural way to glue them so that the new glued diversity (or metric space) remains being hyperconvex. We provide positive and negative answers in both situations.},
author = {Bożena Piątek},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
language = {eng},
pages = {65-76},
title = {On the gluing of hyperconvex metrics and diversities},
url = {http://eudml.org/doc/268795},
volume = {13},
year = {2014},
}
TY - JOUR
AU - Bożena Piątek
TI - On the gluing of hyperconvex metrics and diversities
JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY - 2014
VL - 13
SP - 65
EP - 76
AB - In this work we consider two hyperconvex diversities (or hyperconvex metric spaces) (X, δX) and (Y, δY ) with nonempty intersection and we wonder whether there is a natural way to glue them so that the new glued diversity (or metric space) remains being hyperconvex. We provide positive and negative answers in both situations.
LA - eng
UR - http://eudml.org/doc/268795
ER -
References
top- [1] N. Aronszajn, P. Panitchpakdi, Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439. Cited on 66 and 75.
- [2] M. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematischen Wissenschaften 319, Springer-Verlag, Berlin, 1999. Cited on 70.
- [3] D. Bryant, P.F. Tupper, Hyperconvexity and tight-span theory for diversities, Adv. Math. 231 (2012), no. 6, 3172-3198. Cited on 65, 66, 67, 71 and 74.[WoS]
- [4] A.W.M. Dress, Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces, Adv. in Math. 53 (1984), no. 3, 321-402. Cited on 65.
- [5] R. Espínola, B. Piatek, Diversities, hyperconvexity and fixed points, Nonlinear Anal. 95 (2014), 229-245. Cited on 65, 66 and 67.[WoS]
- [6] R. Espínola, A. Fernández León, Fixed Point Theory in Hyperconvex Metric Spaces, Topics in Fixed Point Theory, 101-158, Springer, Berlin, 2013. Cited on 66 and 71.
- [7] R. Espínola, M.A. Khamsi, Introduction to hyperconvex spaces, Handbook of metric fixed point theory, 391-435, Kluwer Acad. Publ., Dordrecht, 2001. Cited on 66, 71, 74 and 75.
- [8] D. Faith, Conservation evaluation and phylogenetic diversity, Biol. Conserv. 61 (1992), 1-10. Cited on 65.
- [9] J.R Isbell, Injective envelopes of Banach spaces are rigidly attached, Bull. Amer. Math. Soc. 70 (1964), 727-729. Cited on 65 and 74.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.