# Lattice valued intuitionistic fuzzy sets

Tadeusz Gerstenkorn; Andreja Tepavĉević

Open Mathematics (2004)

- Volume: 2, Issue: 3, page 388-398
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topTadeusz Gerstenkorn, and Andreja Tepavĉević. "Lattice valued intuitionistic fuzzy sets." Open Mathematics 2.3 (2004): 388-398. <http://eudml.org/doc/268799>.

@article{TadeuszGerstenkorn2004,

abstract = {In this paper a new definition of a lattice valued intuitionistic fuzzy set (LIFS) is introduced, in an attempt to overcome the disadvantages of earlier definitions. Some properties of this kind of fuzzy sets and their basic operations are given. The theorem of synthesis is proved: For every two families of subsets of a set satisfying certain conditions, there is an lattice valued intuitionistic fuzzy set for which these are families of level sets.},

author = {Tadeusz Gerstenkorn, Andreja Tepavĉević},

journal = {Open Mathematics},

keywords = {03E72; 03B52; 06D72},

language = {eng},

number = {3},

pages = {388-398},

title = {Lattice valued intuitionistic fuzzy sets},

url = {http://eudml.org/doc/268799},

volume = {2},

year = {2004},

}

TY - JOUR

AU - Tadeusz Gerstenkorn

AU - Andreja Tepavĉević

TI - Lattice valued intuitionistic fuzzy sets

JO - Open Mathematics

PY - 2004

VL - 2

IS - 3

SP - 388

EP - 398

AB - In this paper a new definition of a lattice valued intuitionistic fuzzy set (LIFS) is introduced, in an attempt to overcome the disadvantages of earlier definitions. Some properties of this kind of fuzzy sets and their basic operations are given. The theorem of synthesis is proved: For every two families of subsets of a set satisfying certain conditions, there is an lattice valued intuitionistic fuzzy set for which these are families of level sets.

LA - eng

KW - 03E72; 03B52; 06D72

UR - http://eudml.org/doc/268799

ER -

## References

top- [1] K. Atanassov: “Intuitionistic fuzzy sets”,Fuzzy Sets and Systems, Vol.20, (1986),pp.87–96. http://dx.doi.org/10.1016/S0165-0114(86)80034-3 Zbl0631.03040
- [2] K. Atanassov, S. Stoeva: “IntuitionisticL-fuzzy sets”,Cybernetics and Systems Research, Vol. 2, R. Trappl (ed.) Etsevier Science Publishers B.V., North-Holland, (1984), pp. 539–540.
- [3] K. Atanassov:Intuitionistic fuzzy sets, Theory and Applications, Physica-Verlag, Springer Company, Heilderberg, New York, 1999.
- [4] B. A. Davey, H.A. Priestly.Introduction to lattices and order, Cambridge University Press, 1990.
- [5] T. Gerstenkorn, J. Mańko: “Bifuzzy probabilistic sets”Fuzzy Sets and Systems,Vol.71, (1995),pp.207–214. http://dx.doi.org/10.1016/0165-0114(94)00254-5 Zbl0845.60004
- [6] T. Gerstenkorn, J. Mańko: “Bifuzzy probability of intuitionistic fuzzy sets”,Notes on Intuitionistic Fuzzy Sets, Vol. 4 (1998), pp. 8–14.
- [7] T. Gerstenkorn, J. Mańko: “On probability and independence in intuitionistic fuzzy set theory”,Notes on Intuitionistic Fuzzy Sets, Vol. 1, (1995), pp. 36–39. Zbl0850.60002
- [8] T. Gerstenkorn, A. Tepavĉević: “Lattice valued bifuzzy sets, New Logic for the New Economy”, VIII SIGEF Congress Proceedings, ed. by G. Zollo, pp. 65–68.
- [9] B. Ŝeŝelja, A. Tepavĉević: “Representation of lattices by fuzzy sets”,Information Sciences, Vol. 79, (1993), pp. 171–180. Zbl0798.06013
- [10] B. Ŝeŝelja, A. Tepavĉević, G. Vojvodić: “L-fuzzy sets and codes”,Fuzzy sets and systems, Vol. 53, (1993), pp. 217–222. http://dx.doi.org/10.1016/0165-0114(93)90175-H Zbl0782.94012
- [11] B. Ŝeŝelja, A. Tepavĉević: “Completion of ordered structures by cuts of fuzzy sets, an overview”,Fuzzy Sets and Systems,Vol.136 (2003),pp.1–19. http://dx.doi.org/10.1016/S0165-0114(02)00365-2 Zbl1020.06005
- [12] B. Ŝeŝelja, A. Tepavĉević: “Representing ordered structures by fuzzy sets, an overview”,Fuzzy Sets and Systems,Vol.136, (2003),pp.21–39. http://dx.doi.org/10.1016/S0165-0114(02)00366-4 Zbl1026.03039

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.