Lattice valued intuitionistic fuzzy sets

Tadeusz Gerstenkorn; Andreja Tepavĉević

Open Mathematics (2004)

  • Volume: 2, Issue: 3, page 388-398
  • ISSN: 2391-5455

Abstract

top
In this paper a new definition of a lattice valued intuitionistic fuzzy set (LIFS) is introduced, in an attempt to overcome the disadvantages of earlier definitions. Some properties of this kind of fuzzy sets and their basic operations are given. The theorem of synthesis is proved: For every two families of subsets of a set satisfying certain conditions, there is an lattice valued intuitionistic fuzzy set for which these are families of level sets.

How to cite

top

Tadeusz Gerstenkorn, and Andreja Tepavĉević. "Lattice valued intuitionistic fuzzy sets." Open Mathematics 2.3 (2004): 388-398. <http://eudml.org/doc/268799>.

@article{TadeuszGerstenkorn2004,
abstract = {In this paper a new definition of a lattice valued intuitionistic fuzzy set (LIFS) is introduced, in an attempt to overcome the disadvantages of earlier definitions. Some properties of this kind of fuzzy sets and their basic operations are given. The theorem of synthesis is proved: For every two families of subsets of a set satisfying certain conditions, there is an lattice valued intuitionistic fuzzy set for which these are families of level sets.},
author = {Tadeusz Gerstenkorn, Andreja Tepavĉević},
journal = {Open Mathematics},
keywords = {03E72; 03B52; 06D72},
language = {eng},
number = {3},
pages = {388-398},
title = {Lattice valued intuitionistic fuzzy sets},
url = {http://eudml.org/doc/268799},
volume = {2},
year = {2004},
}

TY - JOUR
AU - Tadeusz Gerstenkorn
AU - Andreja Tepavĉević
TI - Lattice valued intuitionistic fuzzy sets
JO - Open Mathematics
PY - 2004
VL - 2
IS - 3
SP - 388
EP - 398
AB - In this paper a new definition of a lattice valued intuitionistic fuzzy set (LIFS) is introduced, in an attempt to overcome the disadvantages of earlier definitions. Some properties of this kind of fuzzy sets and their basic operations are given. The theorem of synthesis is proved: For every two families of subsets of a set satisfying certain conditions, there is an lattice valued intuitionistic fuzzy set for which these are families of level sets.
LA - eng
KW - 03E72; 03B52; 06D72
UR - http://eudml.org/doc/268799
ER -

References

top
  1. [1] K. Atanassov: “Intuitionistic fuzzy sets”,Fuzzy Sets and Systems, Vol.20, (1986),pp.87–96. http://dx.doi.org/10.1016/S0165-0114(86)80034-3 Zbl0631.03040
  2. [2] K. Atanassov, S. Stoeva: “IntuitionisticL-fuzzy sets”,Cybernetics and Systems Research, Vol. 2, R. Trappl (ed.) Etsevier Science Publishers B.V., North-Holland, (1984), pp. 539–540. 
  3. [3] K. Atanassov:Intuitionistic fuzzy sets, Theory and Applications, Physica-Verlag, Springer Company, Heilderberg, New York, 1999. 
  4. [4] B. A. Davey, H.A. Priestly.Introduction to lattices and order, Cambridge University Press, 1990. 
  5. [5] T. Gerstenkorn, J. Mańko: “Bifuzzy probabilistic sets”Fuzzy Sets and Systems,Vol.71, (1995),pp.207–214. http://dx.doi.org/10.1016/0165-0114(94)00254-5 Zbl0845.60004
  6. [6] T. Gerstenkorn, J. Mańko: “Bifuzzy probability of intuitionistic fuzzy sets”,Notes on Intuitionistic Fuzzy Sets, Vol. 4 (1998), pp. 8–14. 
  7. [7] T. Gerstenkorn, J. Mańko: “On probability and independence in intuitionistic fuzzy set theory”,Notes on Intuitionistic Fuzzy Sets, Vol. 1, (1995), pp. 36–39. Zbl0850.60002
  8. [8] T. Gerstenkorn, A. Tepavĉević: “Lattice valued bifuzzy sets, New Logic for the New Economy”, VIII SIGEF Congress Proceedings, ed. by G. Zollo, pp. 65–68. 
  9. [9] B. Ŝeŝelja, A. Tepavĉević: “Representation of lattices by fuzzy sets”,Information Sciences, Vol. 79, (1993), pp. 171–180. Zbl0798.06013
  10. [10] B. Ŝeŝelja, A. Tepavĉević, G. Vojvodić: “L-fuzzy sets and codes”,Fuzzy sets and systems, Vol. 53, (1993), pp. 217–222. http://dx.doi.org/10.1016/0165-0114(93)90175-H Zbl0782.94012
  11. [11] B. Ŝeŝelja, A. Tepavĉević: “Completion of ordered structures by cuts of fuzzy sets, an overview”,Fuzzy Sets and Systems,Vol.136 (2003),pp.1–19. http://dx.doi.org/10.1016/S0165-0114(02)00365-2 Zbl1020.06005
  12. [12] B. Ŝeŝelja, A. Tepavĉević: “Representing ordered structures by fuzzy sets, an overview”,Fuzzy Sets and Systems,Vol.136, (2003),pp.21–39. http://dx.doi.org/10.1016/S0165-0114(02)00366-4 Zbl1026.03039

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.