On some properties of the functions from Sobolev-Morrey type spaces
Open Mathematics (2005)
- Volume: 3, Issue: 3, page 496-507
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAlik Najafov. "On some properties of the functions from Sobolev-Morrey type spaces." Open Mathematics 3.3 (2005): 496-507. <http://eudml.org/doc/268826>.
@article{AlikNajafov2005,
abstract = {In this paper the spaces of type Sobolev-Morrey-W p,a,г,τl(Q,G)-are constructed, the differential properties are studied and it is proved that the functions from these spaces satisfy Holder's condition, in the case, if the domain G∋R n satisfies the flexible λ-horn condition.},
author = {Alik Najafov},
journal = {Open Mathematics},
keywords = {26A33; 46E30; 42B35; 46E35},
language = {eng},
number = {3},
pages = {496-507},
title = {On some properties of the functions from Sobolev-Morrey type spaces},
url = {http://eudml.org/doc/268826},
volume = {3},
year = {2005},
}
TY - JOUR
AU - Alik Najafov
TI - On some properties of the functions from Sobolev-Morrey type spaces
JO - Open Mathematics
PY - 2005
VL - 3
IS - 3
SP - 496
EP - 507
AB - In this paper the spaces of type Sobolev-Morrey-W p,a,г,τl(Q,G)-are constructed, the differential properties are studied and it is proved that the functions from these spaces satisfy Holder's condition, in the case, if the domain G∋R n satisfies the flexible λ-horn condition.
LA - eng
KW - 26A33; 46E30; 42B35; 46E35
UR - http://eudml.org/doc/268826
ER -
References
top- [1] O.V. Besov, V.P. Il'yin and S.M. Nikolskii: Integral representations of functions and imbedding theorems, Nauka, Moscow, 1996, p. 480 (in Russian).
- [2] A.M. Najafov: “Some families functional spaces and imbedding theorems”, Proceeing of IMM of NAS Azerbaijan, Vol. 16(24), (2002), pp. 114–121. Zbl1082.46506
- [3] A.D. Djabrailov: “On ones integral representation of smooth functions and some families of function spaces”, DAN SSSR, Vol. 166(6), (1966), pp. 1280–1283 (in Russian).
- [4] S.M. Nikolskii: “The functions with dominating mixed derivative satisfying the multiple Holder condition”, Sib. Math. Zh., Vol. 4(6), (1963), pp. 1342–1364.
- [5] C.B. Morrey: Multiple integral problems in the calculus of variations and related topics, Univ. California Publ. 1, 1943. Zbl0063.04107
- [6] C.B. Morrey: Second order elliptic systems of differential equations. Ann. Math. Studies, Vol. 3, Princefon Umv. Press, 1954.
- [7] C.B. Morrey: “Second order elliptic equations in several variables and Holder continuity”, Math. Zelt., Vol. 72(2), (1959), pp. 146–164. http://dx.doi.org/10.1007/BF01162944 Zbl0094.07802
- [8] D. Greco: “Criteri di compatteza per insieme di funzioni in “n” variabli indeependenti”, Ricerche di Mal. Napoli, Vol. 1, (1952), pp. 124–144.
- [9] L. Nirenbrg: “Estimates and existence of solutions of elliptic equations”, Comm. Pure Appl. Math., Vol. 9(3), (1956), pp. 509–530.
- [10] S. Campanato: “Caratterizzazione delle tracce di funzioni appatenenti ad una classe di Morrey iniseme con le loro derivate prime”, Ann. Scuola Norm. Sup. di Pisa, ser. III, Vol. 15, Fasc III, (1961), pp. 263–281. Zbl0117.33401
- [11] S. Campanato: “Proprieta di inclusione per spazi di Morrey”, Ricerche di Mat., Vol. 12(1), (1963), pp. 67–86. Zbl0192.22703
- [12] G.C. Barozzi: “Su una generalizzazione degli spazi L (q,λ) di Morrey”, Ann. Scuola Norm. Sup. di Pisa, ser. III, Vol. 19, Fasc. IV, (1965), pp. 609–626. Zbl0139.30202
- [13] V.P. Il'yin: “On some properties of the functions of spaces W p,a,Г l (G)”, Zap. Nauchn. sem. LOMI AN SSSR, Vol. 23, (1971), pp. 33–40 (in Russian).
- [14] Yu.V. Netrusov: “On some imbedding theorems of Besov-Morrey type spaces”, Zap. Nauchn. sem. LOMI AN SSSR, Vol. 139, (1984), pp. 139–147 (in Russian). Zbl0575.46033
- [15] A.M. Najafov: “The interpolation theorems on the Besov-Morrey and Triebel-Lizorkin-Morrey type spaces”, In: Mater. of scientific confer. “The questions on functional analysis and mathematical physics” dedicated to 80-year of Baku State University named after M.A. Rasulzadeh, 1999, pp. 363–366 (in Russian).
- [16] V.S. Guliev, A.M. Najafov: “The imbedding theorems on the Lizorkin-Triebel-Morrey type spaces”, In: Progress in Analysis. Proceedings of the 3rd International ISAAC Congress, Berlin, Vol. 1, 2001, pp. 23–30.
- [17] A.M. Najafov: “The imbedding theorems for the space of Besov-Morrey type with dominant mixed derivatives”, Proceedings of Institute of mathematics and mechanics, Vol. 12(20), (2000), pp. 97–104. Zbl1074.46504
- [18] A.M. Najafov: The spaces with parameters of functions with dominant mixed derivatives, Thesis (PhD), Baku, 1996, (in Russian).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.