Rigidity and flexibility of virtual polytopes

G. Panina

Open Mathematics (2003)

  • Volume: 1, Issue: 2, page 157-168
  • ISSN: 2391-5455

Abstract

top
All 3-dimensional convex polytopes are known to be rigid. Still their Minkowski differences (virtual polytopes) can be flexible with any finite freedom degree. We derive some sufficient rigidity conditions for virtual polytopes and present some examples of flexible ones. For example, Bricard's first and second flexible octahedra can be supplied by the structure of a virtual polytope.

How to cite

top

G. Panina. "Rigidity and flexibility of virtual polytopes." Open Mathematics 1.2 (2003): 157-168. <http://eudml.org/doc/268858>.

@article{G2003,
abstract = {All 3-dimensional convex polytopes are known to be rigid. Still their Minkowski differences (virtual polytopes) can be flexible with any finite freedom degree. We derive some sufficient rigidity conditions for virtual polytopes and present some examples of flexible ones. For example, Bricard's first and second flexible octahedra can be supplied by the structure of a virtual polytope.},
author = {G. Panina},
journal = {Open Mathematics},
keywords = {Virtual polytope; rigidity; flexion; Bricard's octahedron; MSC (2000); 52C25; polytopal function; Bricard's flexible octahedron; Minkowski addition; Grothendieck group; support function; normal vector; connected fan; disconnected net; Cauchy lemma; Euler characteristic; virtual polytope; rigidity theorem; flexible virtual polytopes},
language = {eng},
number = {2},
pages = {157-168},
title = {Rigidity and flexibility of virtual polytopes},
url = {http://eudml.org/doc/268858},
volume = {1},
year = {2003},
}

TY - JOUR
AU - G. Panina
TI - Rigidity and flexibility of virtual polytopes
JO - Open Mathematics
PY - 2003
VL - 1
IS - 2
SP - 157
EP - 168
AB - All 3-dimensional convex polytopes are known to be rigid. Still their Minkowski differences (virtual polytopes) can be flexible with any finite freedom degree. We derive some sufficient rigidity conditions for virtual polytopes and present some examples of flexible ones. For example, Bricard's first and second flexible octahedra can be supplied by the structure of a virtual polytope.
LA - eng
KW - Virtual polytope; rigidity; flexion; Bricard's octahedron; MSC (2000); 52C25; polytopal function; Bricard's flexible octahedron; Minkowski addition; Grothendieck group; support function; normal vector; connected fan; disconnected net; Cauchy lemma; Euler characteristic; virtual polytope; rigidity theorem; flexible virtual polytopes
UR - http://eudml.org/doc/268858
ER -

References

top
  1. [1] A.D. Alexandrov: Konvexe Polyeder, Berlin, Akademie-Verlag (1958). 
  2. [2] Yu. Burago: “Theory of surfaces”, in Encyclopaedia of Math. Sc., Vol. 48, (1992), Geometry 3. 
  3. [3] R. Conelly: “Rigidity”, in: Handbook of convex geometry, Gruber and Wills, (1993), pp. 223–271. 
  4. [4] V. Danilov: “The geometry of toric varieties”, Russian Math. Surveys, Vol. 33, (1978), pp. 97–154. http://dx.doi.org/10.1070/RM1978v033n02ABEH002305 Zbl0425.14013
  5. [5] A. Khovanskii, A. Pukhlikov: “Finitely additive measures of virtual polytopes”, St. Petersburg Math. J., Vol. 4, (1993), pp. 337–356. Zbl0791.52010
  6. [6] K. Leichtweiss: Konvexe Mengen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1980. 
  7. [7] P. McMullen: “The polytope algebra”, Adv. Math., Vol. 78, (1989), pp. 76–130. http://dx.doi.org/10.1016/0001-8708(89)90029-7 
  8. [8] P. McMullen: “On simple polytopes”, Invent. Math., Vol. 113, (1993), pp. 19–111. http://dx.doi.org/10.1007/BF01244313 
  9. [9] Y. Martinez-Maure: “De nouvelles inégalités géométriques pour les hérissons”, Arch. Math., Vol. 72, (1999), pp. 444–453. http://dx.doi.org/10.1007/s000130050354 
  10. [10] Y. Martinez-Maure: “Contre-exemple à une caractérisation conjecturée de la sphère”, C.R. Acad. Sci. Paris, Vol 332, (2001), pp. 41–44. 
  11. [11] G. Panina: “Mixed volumes for non-convex bodies”, Isv. Akad. Nauk Armenii, Matematika, Vol. 28, (1993), pp. 51–59. Zbl0839.52005
  12. [12] G. Panina: “The structure of virtual polytope group related to cylinders subgroups”, St. Petersburg Math. J., Vol. 13, (2001), pp. 471–484. Zbl1009.52026
  13. [13] G. Panina: “Virtual polytopes and some classical problems”, St. Petersburg Math. J., Vol. 14, (2002), pp. 152–170. Zbl1039.52012
  14. [14] H. Radström: “An embedding theorem for spaces of convex sets”, Proc. AMS, Vol. 3, (1952), pp. 165–169. http://dx.doi.org/10.2307/2032477 Zbl0046.33304
  15. [15] L. Rodriguez and H. Rosenberg: “Rigidity of certain polyhedra in ℝ3”, Comment. Math. Helv., Vol. 75, (2000), pp. 478–503. http://dx.doi.org/10.1007/s000140050137 Zbl0968.52018
  16. [16] I. Sabitov: “The local theory of bendings of surfaces”, in: Encyclopaedia of Math. Sc., Vol. 48, (1992), Geometry 3, pp. 179–250. 
  17. [17] O.Ya. Viro: “Some integral calculus based on Euler characteristic”, Topology and Geometry-Rokhlin Seminar, Lecture Notes in Math., 1346, Springer-Verlag, Berlin-New York, 1988, pp. 127–138. 
  18. [18] O.Ya. Viro: “Some integral calculus based on Euler characteristic”, Topology and Geometry-Rokhlin Seminar, Lecture Notes in Math., 1346, Springer-Verlag, Berlin-New York, 1988, pp. 127–138. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.