A compound of the generalized negative binomial distribution with the generalized beta distribution

Tadeusz Gerstenkorn

Open Mathematics (2004)

  • Volume: 2, Issue: 4, page 527-537
  • ISSN: 2391-5455

Abstract

top
This paper presents a compound of the generalized negative binomial distribution with the generalized beta distribution. In the introductory part of the paper, we provide a chronological overview of recent developments in the compounding of distributions, including the Polish results. Then, in addition to presenting the probability function of the compound generalized negative binomial-generalized beta distribution, we present special cases as well as factorial and crude moments of some compound distributions.

How to cite

top

Tadeusz Gerstenkorn. "A compound of the generalized negative binomial distribution with the generalized beta distribution." Open Mathematics 2.4 (2004): 527-537. <http://eudml.org/doc/268867>.

@article{TadeuszGerstenkorn2004,
abstract = {This paper presents a compound of the generalized negative binomial distribution with the generalized beta distribution. In the introductory part of the paper, we provide a chronological overview of recent developments in the compounding of distributions, including the Polish results. Then, in addition to presenting the probability function of the compound generalized negative binomial-generalized beta distribution, we present special cases as well as factorial and crude moments of some compound distributions.},
author = {Tadeusz Gerstenkorn},
journal = {Open Mathematics},
keywords = {60},
language = {eng},
number = {4},
pages = {527-537},
title = {A compound of the generalized negative binomial distribution with the generalized beta distribution},
url = {http://eudml.org/doc/268867},
volume = {2},
year = {2004},
}

TY - JOUR
AU - Tadeusz Gerstenkorn
TI - A compound of the generalized negative binomial distribution with the generalized beta distribution
JO - Open Mathematics
PY - 2004
VL - 2
IS - 4
SP - 527
EP - 537
AB - This paper presents a compound of the generalized negative binomial distribution with the generalized beta distribution. In the introductory part of the paper, we provide a chronological overview of recent developments in the compounding of distributions, including the Polish results. Then, in addition to presenting the probability function of the compound generalized negative binomial-generalized beta distribution, we present special cases as well as factorial and crude moments of some compound distributions.
LA - eng
KW - 60
UR - http://eudml.org/doc/268867
ER -

References

top
  1. [1] G. Bohlmann: “Formulierung und Begründung zweier Hilfssätze der mathematischen Statistik”, Math. Ann., Vol. 74, (1913), pp. 341–409. http://dx.doi.org/10.1007/BF01456750 
  2. [2] M.E. Cansado: “On the compound and generalized Poisson distributions”, Ann. Math. Stat., Vol. 19, (1948), pp. 414–416. Zbl0032.03701
  3. [3] D.S. Dubey: “A compound Weibull distribution”, Naval Res. Logist. Quart, Vol. 15(2), (1968), pp. 179–182. 
  4. [4] D.S. Dubey: “Compound gamma, beta and F distributions”, Metrika, Vol. 16(1), (1970), pp. 27–31. Zbl0195.48903
  5. [5] W. Dyczka: “Zastosowanie składania rozkładów do wyznaczania momentów (Application of compounding of distribution to determination of moments: in Polish)”, Zeszyty Nauk. Politech. Łódzkiej- Scient. Bull. Łódź Techn. Univ., Vol. 168, (1973);Matematyka, Vol. 3, (1973), pp. 205–230. 
  6. [6] W. Dyczka: “A generalized negative binomial distribution as a distribution of PSD class”, Zeszyty Nauk. Politch. Łódzkiej- Scient. Bull. Łódź Techn. Univ., Vol. 272, (1978);Matematyka, Vol. 10, (1978), pp. 5–14. 
  7. [7] W. Feller: “On general class of “contagious”, distributions”, Ann. Math. Stat., Vol. 14, (1943), pp. 389–400. Zbl0063.01341
  8. [8] T. Gerstenkorn and T. Śródka: Kombinatoryka i Rachunek Prawdopodobieństwa (Combinatorics and Probability Theory; in Polish), 7th Ed., PWN, Warsaw, 1983. Zbl0359.60007
  9. [9] T. Gerstenkorn: “The compounding of the binomial and generalized beta distributions”, In: W. Grossmann, G.Ch. Pflug and W. Wertz (Eds.): Proc. 2 nd Pannonian Conf. on Mathem. Statistics (Tatzmannsdorf, Austria, 1981), D. Reidel Pub., Dordrecht, Holland, 1982, pp. 87–99. 
  10. [10] T. Gerstenkorn: “A compound of the generalized gamma distribution with the exponential one”, Bull. Soc. Sci. Letters Lodz, Vol. 43(1), (1993);Recherches sur les déformations, Vol. 16(1), (1993). pp. 5–10. 
  11. [11] T. Gerstenkorn: “A compound of the Pólya distribution with the beta one”, Random Oper. and Stoch. Equ., Vol. 4(2), (1996), pp. 103–110. http://dx.doi.org/10.1515/rose.1996.4.2.103 
  12. [12] I. Ginzel: “Die konforme Abbildung durch die Gammafunktion”, Acta Mathematica, Vol. 56, (1931), pp. 273–353. Zbl57.0421.01
  13. [13] M. Greenwood and G.U. Yule: “An inquiry into the nature of frequency distribution representative of multiple happenings with particular reference to the occurrence of multiple attacks of disease or of repeated accidents”, J. Roy. Stat. Soc., Vol. 83, (1920), pp. 255–279. http://dx.doi.org/10.2307/2341080 
  14. [14] J. Gurland: “Some interrelations among compound and generalized distributions”, Biometrika, Vol. 44, (1957), pp. 265–268. http://dx.doi.org/10.2307/2333264 Zbl0084.14003
  15. [15] M.L. Huang and K.Y. Fung: “D compound Poisson distribution”, Statistical Papers-Statistische Hefte, Vol. 34, (1993), pp. 319–338. Zbl0784.62010
  16. [16] G.C. Jain and P.C. Consul: “A generalized negative binomial distribution”, SIAM J. Appl. Math, Vol. 21(4), (1971), pp. 507–513. http://dx.doi.org/10.1137/0121056 Zbl0234.60010
  17. [17] H. Jakuszenkow: “Nowe złożenia rozkładów (New compounds of distributions; in Polish)”, Przegląd Statystyczny, Vol. 20(1), (1973) pp. 67–73. 
  18. [18] N.L. Johnson, S. Kotz and A. Kemp: Univariate Discrete Distributions, 2nd Ed., J. Wiley, New York, 1992. 
  19. [19] S.K. Katti and J. Gurland: “The Poisson-Pacal distribution”, Biometrics, Vol. 17, (1967), pp. 527–538. http://dx.doi.org/10.2307/2527853 Zbl0113.35103
  20. [20] A. Kaufmann: Introduction à la Combinatorique en Vue des Applications, Dunod, Paris, 1968. Zbl0169.01801
  21. [21] O. Lundberg: On Random Processes and Their Application to Sickness and Accident Statistics, Almquist and Wiksells Boktryckeri-A. B., Uppsala, 1940. Zbl66.0678.01
  22. [22] J. Łukaszewicz and M. Warmus: Metody Numeryczne i Graficzne (Numerical and Graphical Methods;in Polish), PWN, Warszawa, 1956. 
  23. [23] W. Molenaar: “Some remarks on mixtures of distributions”, Bull. Intern. Statist. Institute; 35 th Session of the Intern. Statist. Inst., Beograd, Vol. 2, (1965), pp. 764–765. 
  24. [24] W. Molenaar and W.R. van Zwet: “On mixtures of distributions”, Ann. Math. Stat., Vol. 37(1), (1966), pp. 281–283. Zbl0147.18103
  25. [25] L. Ogiński: “Zastosowanie pewnego rozkładu typu Bessela w teorii niezawodności (Application of a distribution of the Bessel type in the reliability theory; in Polish)”, Zeszyty Nauk. Politech. Łódzkiej- Scient. Bull. Łódź Techn. Univ., Vol. 324, (1979);Matematyka, Vol. 12, (1979). pp. 31–42. 
  26. [26] G.P. Patil, S.W. Joshi and C.R. Rao: A Dictionary and Bibliography of Discrete Distributions, Oliver and Boyd, Edinburgh, 1968. 
  27. [27] E.S. Pearson: “Baye’s theorem, examined in the light of experimental sampling”, Biometrika, Vol. 17, (1925), pp. 388–442. http://dx.doi.org/10.2307/2332088 Zbl51.0383.02
  28. [28] F.E. Satterthwaite: “Generalized Poisson distribution”, Ann. Math. Stat., Vol. 134, (1942), pp. 410–417. Zbl0063.06743
  29. [29] J.G. Seweryn: “Some probabilistic properties of Bessel distributions”, Zeszyty Nauk. Politechn. Łódzkiej- Scient. Bull. Łódź Techn. Univ., Vol. 466, (1986);Matematyka, Vol. 19, (1986), pp. 69–87. 
  30. [30] J.G. Skellam: “A probability distribution derived from the binomial distribution by regarding the probability of success as variable between the sets of trials”, J. Roy. Statist. Soc., Ser. B, Vol. 10(2), (1948), pp. 257–261. Zbl0032.41903
  31. [31] E.W. Stacy: “A generalization of the gamma distribution”, Ann. Math. Stat., Vol. 33(3), (1962), pp. 1187–1192. Zbl0121.36802
  32. [32] T. Śródka: “Nouvelles compositions de certaines distributions”, Bull. Soc. Sci. Lettres, Łódź, Vol. 15(5), (1964), pp. 1–11. 
  33. [33] T. Śródka: “Złożenie rozkładu Laplace’a z pewnym uogólnionym rozkładem gamma, Maxwella i Weibulla (Compounding of the Laplace distribution with a generalized gamma, Maxwell and Weibull distributions; in Polish)”, Zeszyty Nauk Politech. Łódzk.- Scient. Bull. Łódź Techn. Univ., Vol. 77, (1966);Włókiennictwo (Textile industry), Vol. 14, (1966), pp. 21–28. 
  34. [34] T. Śródka: “On some generalized Bessel-type probability distribution”, Zeszyty Nauk. Politechn. Łódzk.- Scient. Bull. Łódź Techn. Univ., Vol. 179, (1973);Matematyka, Vol. 4, (1973), pp. 5–31. 
  35. [35] H. Teicher: “On the mixtures of distributions”, Ann. Math. Stat., Vol. 31, (1960), pp. 55–72. 
  36. [36] H. Teicher: “Identifiability of mixtures”, Ann. Math. Stat., Vol. 32, (1962), pp. 244–248. Zbl0146.39302
  37. [37] G.E. Willmot: “A remark on the Poisson-Pascal and some other contagious distributions”, Statist. Probab. Lett., Vol. 7(3), (1989), pp. 217–220. http://dx.doi.org/10.1016/0167-7152(88)90053-3 
  38. [38] G. Wimmer and G. Altmann: Thesaurus of Discrete Probability Distributions, Stamm, Essen, 1999. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.