Bivariant Chern classes for morphisms with nonsingular target varieties

Shoji Yokura

Open Mathematics (2005)

  • Volume: 3, Issue: 4, page 614-626
  • ISSN: 2391-5455

Abstract

top
W. Fulton and R. MacPherson posed the problem of unique existence of a bivariant Chern class-a Grothendieck transformation from the bivariant theory F of constructible functions to the bivariant homology theory H. J.-P. Brasselet proved the existence of a bivariant Chern class in the category of embeddable analytic varieties with cellular morphisms. In general however, the problem of uniqueness is still unresolved. In this paper we show that for morphisms having nonsingular target varieties there exists another bivariant theory 𝔽 ˜ of constructible functions and a unique bivariant Chern class γ: 𝔽 ˜ .

How to cite

top

Shoji Yokura. "Bivariant Chern classes for morphisms with nonsingular target varieties." Open Mathematics 3.4 (2005): 614-626. <http://eudml.org/doc/268871>.

@article{ShojiYokura2005,
abstract = {W. Fulton and R. MacPherson posed the problem of unique existence of a bivariant Chern class-a Grothendieck transformation from the bivariant theory F of constructible functions to the bivariant homology theory H. J.-P. Brasselet proved the existence of a bivariant Chern class in the category of embeddable analytic varieties with cellular morphisms. In general however, the problem of uniqueness is still unresolved. In this paper we show that for morphisms having nonsingular target varieties there exists another bivariant theory \[\tilde\{\mathbb \{F\}\}\] of constructible functions and a unique bivariant Chern class γ: \[\tilde\{\mathbb \{F\}\} \rightarrow \{\mathbb \{H\}\}\] .},
author = {Shoji Yokura},
journal = {Open Mathematics},
keywords = {14C17; 14F99; 55N35},
language = {eng},
number = {4},
pages = {614-626},
title = {Bivariant Chern classes for morphisms with nonsingular target varieties},
url = {http://eudml.org/doc/268871},
volume = {3},
year = {2005},
}

TY - JOUR
AU - Shoji Yokura
TI - Bivariant Chern classes for morphisms with nonsingular target varieties
JO - Open Mathematics
PY - 2005
VL - 3
IS - 4
SP - 614
EP - 626
AB - W. Fulton and R. MacPherson posed the problem of unique existence of a bivariant Chern class-a Grothendieck transformation from the bivariant theory F of constructible functions to the bivariant homology theory H. J.-P. Brasselet proved the existence of a bivariant Chern class in the category of embeddable analytic varieties with cellular morphisms. In general however, the problem of uniqueness is still unresolved. In this paper we show that for morphisms having nonsingular target varieties there exists another bivariant theory \[\tilde{\mathbb {F}}\] of constructible functions and a unique bivariant Chern class γ: \[\tilde{\mathbb {F}} \rightarrow {\mathbb {H}}\] .
LA - eng
KW - 14C17; 14F99; 55N35
UR - http://eudml.org/doc/268871
ER -

References

top
  1. [1] J.-P. Brasselet: “Existence des classes de Chern en théorie bivariante”, Astérisque, Vol. 101–102, (1981), pp. 7–22. Zbl0529.55009
  2. [2] J.-P. Brasselet, J. Schürmann and S. Yokura: “Bivariant Chern classes and Grothendieck transformations”, Math. AG/0404132. Zbl1109.14008
  3. [3] J.-P. Brasselet and M.-H. Schwartz: “Sur les classes de Chern d’un ensemble analytique complexe”, Astérisque, Vol. 82–83, (1981), pp. 93–148. Zbl0471.57006
  4. [4] N. Chriss and V. Ginzburg: Representation theory and complex geometry, Birkhäuser, 1997. Zbl0879.22001
  5. [5] A. Dimca: Sheaves in Topology, Springer-Verlag, 2004. 
  6. [6] W. Fulton: Intersection Theory, Springer-Verlag, 1984. 
  7. [7] W. Fulton and R. MacPherson: “Categorical frameworks for the study of singular spaces”, Memoirs of Amer. Math. Soc., Vol. 243, (1981). Zbl0467.55005
  8. [8] V. Ginzburg: “G-Modules, Springer’s Representations and Bivariant Chern Classes”, Adv. in Maths., Vol. 61, (1986), pp. 1–48. http://dx.doi.org/10.1016/0001-8708(86)90064-2 
  9. [9] V. Ginzburg: “Geometric methods in the representation theory of Hecke algebras and quantum groups”, In: A. Broer and A. Daigneault (Eds.): Representation theories and algebraic geometry (Montreal, PQ, 1997), Kluwer Acad. Publ., Dordrecht, 1998, pp. 127–183. 
  10. [10] M. Kashiwara and P. Schapira: Sheaves on Manifolds, Springer-Verlag, 1990. Zbl0709.18001
  11. [11] G. Kennedy: “MacPherson’s Chern classes of singular algebraic varieties”, Comm. Algebra, Vol. 9 (18), (1990), pp. 2821–2839. Zbl0709.14016
  12. [12] M. Kwieciński: “Formule du produit pour les classes caractéristiques deChern-Schwartz-MacPherson et homologie d’intersection”, C. R. Acad. Sci. Paris, Vol. 314, (1992) pp. 625–628. Zbl0755.14007
  13. [13] M. Kwieciński: “Sur le transformé de Nash et la construction du graph de MacPherson”, In: Thèse, Université de Provence, 1994. 
  14. [14] M. Kwieciński and S. Yokura: “Product formula of the twisted MacPherson class”, Proc. Japan Acad., Vol. 68, (1992) pp. 167–171. Zbl0781.57012
  15. [15] R. MacPherson: “Chern classes for singular algebraic varieties”, Ann. of Math., Vol. 100, (1974), pp. 423–432. http://dx.doi.org/10.2307/1971080 Zbl0311.14001
  16. [16] C. Sabbah: Espaces conormaux bivariants, Thèse, l’Université Paris, Vol. 7, 1986. 
  17. [17] P. Schapira: “Operations on constructible functions”, J. Pure Appl. Algebra, Vol. 72, (1991), pp. 83–93. http://dx.doi.org/10.1016/0022-4049(91)90131-K 
  18. [18] J. Schürmann: “A generalized Verdier-type Riemann-Roch theorem for Chern-Schwartz Mac-Pherson classes”, math. AG/0202175. 
  19. [19] J. Schürmann: “A general construction of partial Grothendieck transformations”, math. AG/0209299. 
  20. [20] J. Schürmann: Topology of singular spaces and constructible sheaves, Monografie Matematyczne, Vol. 63, (New Series), Birkhäuser, Basel, 2003. 
  21. [21] M.-H. Schwartz: “Classes caractéristiques définies par une stratification d’unevariété analytique complexe”, C. R. Acad. Sci. Paris, Vol. 260, (1965), pp. 3262–3264, 3535–3537. Zbl0139.16901
  22. [22] M.-H. Schwartz: “Classes et caractères de Chern des espaces linéaires”, Pub. Int. Univ. Lille, 2 Fasc. 3, (1980). 
  23. [23] O. Viro: “Some integral calculus based on the Euler characteristic”, Springer Lect. Notes Math., Vol. 1346, (1989), pp. 127–138. http://dx.doi.org/10.1007/BFb0082775 
  24. [24] S. Yokura: “On a Verdier-type Riemann-Roch for Chern-Schwartz-MacPherson class”, Topology and Its Applications, Vol. 94, (1999), pp. 315–327. http://dx.doi.org/10.1016/S0166-8641(98)00037-6 Zbl0928.14010
  25. [25] S. Yokura: “On the uniqueness problem of the bivariant Chern classes”, Documenta Mathematica, Vol. 7, (2002), pp. 133–142. Zbl1074.14504
  26. [26] S. Yokura: “Bivariant theories of constructible functions and Grothendieck transformations”, Topology and Its Applications, Vol. 123, (2002), pp. 283–296. http://dx.doi.org/10.1016/S0166-8641(01)00197-3 Zbl1045.55003
  27. [27] J. Zhou: Classes de Chern en théorie bivariante, Thèse, Université Aix-Marseille, Vol. 2, 1995. 
  28. [28] J. Zhou: “Morphisme cellulaire et classes de Chern bivariantes”, Ann. Fac. Sci. Toulouse Math., Vol. 9, (2000), pp. 161–192. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.