Bivariant Chern classes for morphisms with nonsingular target varieties
Open Mathematics (2005)
- Volume: 3, Issue: 4, page 614-626
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topShoji Yokura. "Bivariant Chern classes for morphisms with nonsingular target varieties." Open Mathematics 3.4 (2005): 614-626. <http://eudml.org/doc/268871>.
@article{ShojiYokura2005,
abstract = {W. Fulton and R. MacPherson posed the problem of unique existence of a bivariant Chern class-a Grothendieck transformation from the bivariant theory F of constructible functions to the bivariant homology theory H. J.-P. Brasselet proved the existence of a bivariant Chern class in the category of embeddable analytic varieties with cellular morphisms. In general however, the problem of uniqueness is still unresolved. In this paper we show that for morphisms having nonsingular target varieties there exists another bivariant theory \[\tilde\{\mathbb \{F\}\}\]
of constructible functions and a unique bivariant Chern class γ: \[\tilde\{\mathbb \{F\}\} \rightarrow \{\mathbb \{H\}\}\]
.},
author = {Shoji Yokura},
journal = {Open Mathematics},
keywords = {14C17; 14F99; 55N35},
language = {eng},
number = {4},
pages = {614-626},
title = {Bivariant Chern classes for morphisms with nonsingular target varieties},
url = {http://eudml.org/doc/268871},
volume = {3},
year = {2005},
}
TY - JOUR
AU - Shoji Yokura
TI - Bivariant Chern classes for morphisms with nonsingular target varieties
JO - Open Mathematics
PY - 2005
VL - 3
IS - 4
SP - 614
EP - 626
AB - W. Fulton and R. MacPherson posed the problem of unique existence of a bivariant Chern class-a Grothendieck transformation from the bivariant theory F of constructible functions to the bivariant homology theory H. J.-P. Brasselet proved the existence of a bivariant Chern class in the category of embeddable analytic varieties with cellular morphisms. In general however, the problem of uniqueness is still unresolved. In this paper we show that for morphisms having nonsingular target varieties there exists another bivariant theory \[\tilde{\mathbb {F}}\]
of constructible functions and a unique bivariant Chern class γ: \[\tilde{\mathbb {F}} \rightarrow {\mathbb {H}}\]
.
LA - eng
KW - 14C17; 14F99; 55N35
UR - http://eudml.org/doc/268871
ER -
References
top- [1] J.-P. Brasselet: “Existence des classes de Chern en théorie bivariante”, Astérisque, Vol. 101–102, (1981), pp. 7–22. Zbl0529.55009
- [2] J.-P. Brasselet, J. Schürmann and S. Yokura: “Bivariant Chern classes and Grothendieck transformations”, Math. AG/0404132. Zbl1109.14008
- [3] J.-P. Brasselet and M.-H. Schwartz: “Sur les classes de Chern d’un ensemble analytique complexe”, Astérisque, Vol. 82–83, (1981), pp. 93–148. Zbl0471.57006
- [4] N. Chriss and V. Ginzburg: Representation theory and complex geometry, Birkhäuser, 1997. Zbl0879.22001
- [5] A. Dimca: Sheaves in Topology, Springer-Verlag, 2004.
- [6] W. Fulton: Intersection Theory, Springer-Verlag, 1984.
- [7] W. Fulton and R. MacPherson: “Categorical frameworks for the study of singular spaces”, Memoirs of Amer. Math. Soc., Vol. 243, (1981). Zbl0467.55005
- [8] V. Ginzburg: “G-Modules, Springer’s Representations and Bivariant Chern Classes”, Adv. in Maths., Vol. 61, (1986), pp. 1–48. http://dx.doi.org/10.1016/0001-8708(86)90064-2
- [9] V. Ginzburg: “Geometric methods in the representation theory of Hecke algebras and quantum groups”, In: A. Broer and A. Daigneault (Eds.): Representation theories and algebraic geometry (Montreal, PQ, 1997), Kluwer Acad. Publ., Dordrecht, 1998, pp. 127–183.
- [10] M. Kashiwara and P. Schapira: Sheaves on Manifolds, Springer-Verlag, 1990. Zbl0709.18001
- [11] G. Kennedy: “MacPherson’s Chern classes of singular algebraic varieties”, Comm. Algebra, Vol. 9 (18), (1990), pp. 2821–2839. Zbl0709.14016
- [12] M. Kwieciński: “Formule du produit pour les classes caractéristiques deChern-Schwartz-MacPherson et homologie d’intersection”, C. R. Acad. Sci. Paris, Vol. 314, (1992) pp. 625–628. Zbl0755.14007
- [13] M. Kwieciński: “Sur le transformé de Nash et la construction du graph de MacPherson”, In: Thèse, Université de Provence, 1994.
- [14] M. Kwieciński and S. Yokura: “Product formula of the twisted MacPherson class”, Proc. Japan Acad., Vol. 68, (1992) pp. 167–171. Zbl0781.57012
- [15] R. MacPherson: “Chern classes for singular algebraic varieties”, Ann. of Math., Vol. 100, (1974), pp. 423–432. http://dx.doi.org/10.2307/1971080 Zbl0311.14001
- [16] C. Sabbah: Espaces conormaux bivariants, Thèse, l’Université Paris, Vol. 7, 1986.
- [17] P. Schapira: “Operations on constructible functions”, J. Pure Appl. Algebra, Vol. 72, (1991), pp. 83–93. http://dx.doi.org/10.1016/0022-4049(91)90131-K
- [18] J. Schürmann: “A generalized Verdier-type Riemann-Roch theorem for Chern-Schwartz Mac-Pherson classes”, math. AG/0202175.
- [19] J. Schürmann: “A general construction of partial Grothendieck transformations”, math. AG/0209299.
- [20] J. Schürmann: Topology of singular spaces and constructible sheaves, Monografie Matematyczne, Vol. 63, (New Series), Birkhäuser, Basel, 2003.
- [21] M.-H. Schwartz: “Classes caractéristiques définies par une stratification d’unevariété analytique complexe”, C. R. Acad. Sci. Paris, Vol. 260, (1965), pp. 3262–3264, 3535–3537. Zbl0139.16901
- [22] M.-H. Schwartz: “Classes et caractères de Chern des espaces linéaires”, Pub. Int. Univ. Lille, 2 Fasc. 3, (1980).
- [23] O. Viro: “Some integral calculus based on the Euler characteristic”, Springer Lect. Notes Math., Vol. 1346, (1989), pp. 127–138. http://dx.doi.org/10.1007/BFb0082775
- [24] S. Yokura: “On a Verdier-type Riemann-Roch for Chern-Schwartz-MacPherson class”, Topology and Its Applications, Vol. 94, (1999), pp. 315–327. http://dx.doi.org/10.1016/S0166-8641(98)00037-6 Zbl0928.14010
- [25] S. Yokura: “On the uniqueness problem of the bivariant Chern classes”, Documenta Mathematica, Vol. 7, (2002), pp. 133–142. Zbl1074.14504
- [26] S. Yokura: “Bivariant theories of constructible functions and Grothendieck transformations”, Topology and Its Applications, Vol. 123, (2002), pp. 283–296. http://dx.doi.org/10.1016/S0166-8641(01)00197-3 Zbl1045.55003
- [27] J. Zhou: Classes de Chern en théorie bivariante, Thèse, Université Aix-Marseille, Vol. 2, 1995.
- [28] J. Zhou: “Morphisme cellulaire et classes de Chern bivariantes”, Ann. Fac. Sci. Toulouse Math., Vol. 9, (2000), pp. 161–192.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.