On Bochner flat para-Kählerian manifolds

Dorota Łuczyszyn

Open Mathematics (2005)

  • Volume: 3, Issue: 2, page 331-341
  • ISSN: 2391-5455

Abstract

top
Let B be the Bochner curvature tensor of a para-Kählerian manifold. It is proved that if the manifold is Bochner parallel (∇ B = 0), then it is Bochner flat (B = 0) or locally symmetric (∇ R = 0). Moreover, we define the notion of tha paraholomorphic pseudosymmetry of a para-Kählerian manifold. We find necessary and sufficient conditions for a Bochner flat para-Kählerian manifold to be paraholomorphically pseudosymmetric. Especially, in the case when the Ricci operator is diagonalizable, a Bochner flat para-Kählerian manifold is paraholomorphically pseudosymmetric if and only if the Ricci operator has at most two eigenvalues. A class of examples of manifolds of this kind is presented.

How to cite

top

Dorota Łuczyszyn. "On Bochner flat para-Kählerian manifolds." Open Mathematics 3.2 (2005): 331-341. <http://eudml.org/doc/268876>.

@article{DorotaŁuczyszyn2005,
abstract = {Let B be the Bochner curvature tensor of a para-Kählerian manifold. It is proved that if the manifold is Bochner parallel (∇ B = 0), then it is Bochner flat (B = 0) or locally symmetric (∇ R = 0). Moreover, we define the notion of tha paraholomorphic pseudosymmetry of a para-Kählerian manifold. We find necessary and sufficient conditions for a Bochner flat para-Kählerian manifold to be paraholomorphically pseudosymmetric. Especially, in the case when the Ricci operator is diagonalizable, a Bochner flat para-Kählerian manifold is paraholomorphically pseudosymmetric if and only if the Ricci operator has at most two eigenvalues. A class of examples of manifolds of this kind is presented.},
author = {Dorota Łuczyszyn},
journal = {Open Mathematics},
keywords = {53C15; 53C50; 53C56},
language = {eng},
number = {2},
pages = {331-341},
title = {On Bochner flat para-Kählerian manifolds},
url = {http://eudml.org/doc/268876},
volume = {3},
year = {2005},
}

TY - JOUR
AU - Dorota Łuczyszyn
TI - On Bochner flat para-Kählerian manifolds
JO - Open Mathematics
PY - 2005
VL - 3
IS - 2
SP - 331
EP - 341
AB - Let B be the Bochner curvature tensor of a para-Kählerian manifold. It is proved that if the manifold is Bochner parallel (∇ B = 0), then it is Bochner flat (B = 0) or locally symmetric (∇ R = 0). Moreover, we define the notion of tha paraholomorphic pseudosymmetry of a para-Kählerian manifold. We find necessary and sufficient conditions for a Bochner flat para-Kählerian manifold to be paraholomorphically pseudosymmetric. Especially, in the case when the Ricci operator is diagonalizable, a Bochner flat para-Kählerian manifold is paraholomorphically pseudosymmetric if and only if the Ricci operator has at most two eigenvalues. A class of examples of manifolds of this kind is presented.
LA - eng
KW - 53C15; 53C50; 53C56
UR - http://eudml.org/doc/268876
ER -

References

top
  1. [1] C.L. Bejan: “The Bochner curvature tensor on a hyperbolic Kähler manifold”, In: Colloquia Mathematica Societatis Jànos Bolyai, Vol. 56, Differential Geometry, Eger (Hungary), 1989, pp. 93–99, Zbl0788.53064
  2. [2] A. Bonome, R. Castro, E. García-Río, L. Hervella and R. Vázquez-Lorenzo: “On the paraholomorphic sectional curvature of almost para-Hermitian manifolds”, Houston J. Math., Vol. 24, (1998), pp. 277–300. Zbl0965.53052
  3. [3] R.L. Bryant: “Bochner-Kähler metrics”, J. Amer. Math. Soc., Vol. 14(3), (2001), pp. 623–715. http://dx.doi.org/10.1090/S0894-0347-01-00366-6 Zbl1006.53019
  4. [4] V. Cruceanu, P. Fortuny and P.M. Gadea: “A survey on paracomplex geometry”, Rocky Mountain J. Math., Vol. 26, (1996), pp. 83–115. http://dx.doi.org/10.1216/rmjm/1181072105 Zbl0856.53049
  5. [5] P.M. Gadea, V. Cruceanu and J. Muñoz Masqué: “Para-Hermitian and para-Kähler manifolds”, Quaderni Inst. Mat., Fac. Economia, Univ. Messina, Vol. 1, (1995), pp. 72. 
  6. [6] G. Ganchev and A. Borisov: “Isotropic sections and curvature properties of hyperbolic Kaehlerian manifolds”, Publ. Inst. Math., Vol. 38, (1985), pp. 183–192. Zbl0587.53026
  7. [7] E. García-Río, L. Hervella and R. Vázquez-Lorenzo: “Curvature properties of para-Kähler manifolds”, In: New developments in differential geometry (Debrecen, 1994), Math. Appl., Vol. 350, Kluwer Acad. Publ., Dordrecht, 1996, pp. 193–200. Zbl0843.53029
  8. [8] S. Kaneyuki and M. Kozai: “Paracomplex structures and affine symmetric spaces”, Tokyo Math. J., Vol. 8, (1985), pp. 81–98. http://dx.doi.org/10.3836/tjm/1270151571 Zbl0585.53029
  9. [9] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry, Vol. I, II, John Wiley & Sons, New York-London, 1963, 1969. Zbl0119.37502
  10. [10] D. Luczyszyn: “On Bochner semisymmetric para-Kählerian manifolds”, Demonstr. Math., Vol. 34, (2001), pp. 933–942. Zbl1029.53038
  11. [11] D. Łuczyszyn: “On pseudosymmetric para-Kählerian manifolds”, Beiträge Alg. Geom., Vol. 44, (2003), pp. 551–558. Zbl1076.53034
  12. [12] M. Matsumoto and S. Tanno: “Kählerian spaces with parallel or vanishing Bochner curvature tensor”, Tensor N.S., Vol. 27, (1973), pp. 291–294. Zbl0278.53046
  13. [13] Z. Olszak: “Bochner flat Kählerian manifolds”, In: Differential Geometry, Banach Center Publication, Vol. 12, PWN-Polish Scientific Publishers, Warsaw, 1984, pp. 219–223. 
  14. [14] Z. Olszak: “Bochner flat Kählerian manifolds with a certain condition on the Ricci tensor”, Simon Stevin, Vol. 63, (1989), pp. 295–303. Zbl0629.53059
  15. [15] E.M. Patterson: “Riemann extensions which have Kähler metrics”, Proc. Roy. Soc. Edinburgh (A), Vol. 64, (1954), pp. 113–126. Zbl0057.14003
  16. [16] E.M. Patterson: “Symmetric Kähler spaces”, J. London Math. Soc., Vol. 30, (1955), pp. 286–291. Zbl0065.14901
  17. [17] N. Pušić: “On an invariant tensor of a conformal transformation of a hyperbolic Kaehlerian manifold”, Zb. Rad. Fil. Fak. Niš, Ser. Mat., Vol. 4, (1990), pp. 55–64. Zbl0707.53023
  18. [18] N. Pušić: “On HB-parallel hyperbolic Kaehlerian spaces”, Math. Balkanica N.S., Vol. 8, (1994), pp. 131–150. 
  19. [19] N. Pušić: “On HB-recurrent hyperbolic Kaehlerian spaces”, Publ. Inst. Math. (Beograd) N.S., Vol. 55, (1994), pp. 64–74. Zbl0827.53018
  20. [20] N. Pušić: “On HB-flat hyperbolic Kaehlerian spaces”, Mat. Vesnik, Vol. 49, (1997), pp. 35–44. Zbl0964.53017
  21. [21] R.O. Wells: Differential analysis on complex manifolds, Graduate Texts in Mathematics, Vol. 65, Springer-Verlag, New York-Berlin, 1980. Zbl0435.32004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.