Heisenberg Hausdorff Dimension of Besicovitch Sets

Laura Venieri

Analysis and Geometry in Metric Spaces (2014)

  • Volume: 2, Issue: 1, page 319-327, electronic only
  • ISSN: 2299-3274

Abstract

top
We consider (bounded) Besicovitch sets in the Heisenberg group and prove that Lp estimates for the Kakeya maximal function imply lower bounds for their Heisenberg Hausdorff dimension.

How to cite

top

Laura Venieri. "Heisenberg Hausdorff Dimension of Besicovitch Sets." Analysis and Geometry in Metric Spaces 2.1 (2014): 319-327, electronic only. <http://eudml.org/doc/268882>.

@article{LauraVenieri2014,
abstract = {We consider (bounded) Besicovitch sets in the Heisenberg group and prove that Lp estimates for the Kakeya maximal function imply lower bounds for their Heisenberg Hausdorff dimension.},
author = {Laura Venieri},
journal = {Analysis and Geometry in Metric Spaces},
keywords = {Besicovitch set; Kakeya maximal function; Heisenberg group; Hausdorff dimension},
language = {eng},
number = {1},
pages = {319-327, electronic only},
title = {Heisenberg Hausdorff Dimension of Besicovitch Sets},
url = {http://eudml.org/doc/268882},
volume = {2},
year = {2014},
}

TY - JOUR
AU - Laura Venieri
TI - Heisenberg Hausdorff Dimension of Besicovitch Sets
JO - Analysis and Geometry in Metric Spaces
PY - 2014
VL - 2
IS - 1
SP - 319
EP - 327, electronic only
AB - We consider (bounded) Besicovitch sets in the Heisenberg group and prove that Lp estimates for the Kakeya maximal function imply lower bounds for their Heisenberg Hausdorff dimension.
LA - eng
KW - Besicovitch set; Kakeya maximal function; Heisenberg group; Hausdorff dimension
UR - http://eudml.org/doc/268882
ER -

References

top
  1. [1] J. Bourgain. Besicovitch typemaximal operators and applications to Fourier analysis. Geom. Funct. Anal., 1(2):147–187, 1991. Zbl0756.42014
  2. [2] J. Bourgain. On the dimension of Kakeya sets and related maximal inequalities. Geom. Funct. Anal., 9(2):256–282, 1999. Zbl0930.43005
  3. [3] Roy O. Davies. Some remarks on the Kakeya problem. Mathematical Proceedings of the Cambridge Philosophical Society, 69:417–421, 5 1971. Zbl0209.26602
  4. [4] Nets Hawk Katz and Terence Tao. Bounds on arithmetic projections, and applications to the Kakeya conjecture. Math. Res. Lett., 6(5-6):625–630, 1999. 
  5. [5] Nets Hawk Katz and Terence Tao. New bounds for Kakeya problems. J. Anal. Math., 87:231–263, 2002. Dedicated to the memory of Thomas H. Wolff. Zbl1027.42014
  6. [6] Pertti Mattila. Fourier transform and Hausdorff dimension. http://wiki.helsinki.fi/display/mathstatKurssit/Fourier+ transform+and+Hausdorff+dimension%2C+spring+2014. Zbl1049.28007
  7. [7] Terence Tao. The Bochner-Riesz conjecture implies the restriction conjecture. Duke Math. J., 96(2):363–375, 1999. Zbl0980.42006
  8. [8] Thomas Wolff. An improved bound for Kakeya type maximal functions. Rev. Mat. Iberoamericana, 11(3):651–674, 1995. Zbl0848.42015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.