Discrete limit theorems for general Dirichlet series. III

A. Laurinčikas; R. Macaitienė

Open Mathematics (2004)

  • Volume: 2, Issue: 3, page 339-361
  • ISSN: 2391-5455

Abstract

top
Here we prove a limit theorem in the sense of the weak convergence of probability measures in the space of meromorphic functions for a general Dirichlet series. The explicit form of the limit measure in this theorem is given.

How to cite

top

A. Laurinčikas, and R. Macaitienė. "Discrete limit theorems for general Dirichlet series. III." Open Mathematics 2.3 (2004): 339-361. <http://eudml.org/doc/268884>.

@article{A2004,
abstract = {Here we prove a limit theorem in the sense of the weak convergence of probability measures in the space of meromorphic functions for a general Dirichlet series. The explicit form of the limit measure in this theorem is given.},
author = {A. Laurinčikas, R. Macaitienė},
journal = {Open Mathematics},
keywords = {11M41; 30B50; 60B10},
language = {eng},
number = {3},
pages = {339-361},
title = {Discrete limit theorems for general Dirichlet series. III},
url = {http://eudml.org/doc/268884},
volume = {2},
year = {2004},
}

TY - JOUR
AU - A. Laurinčikas
AU - R. Macaitienė
TI - Discrete limit theorems for general Dirichlet series. III
JO - Open Mathematics
PY - 2004
VL - 2
IS - 3
SP - 339
EP - 361
AB - Here we prove a limit theorem in the sense of the weak convergence of probability measures in the space of meromorphic functions for a general Dirichlet series. The explicit form of the limit measure in this theorem is given.
LA - eng
KW - 11M41; 30B50; 60B10
UR - http://eudml.org/doc/268884
ER -

References

top
  1. [1] P. Billingsley:Convergence of Probability Measures, Wiley, New York, 1968. 
  2. [2] H. Bohr and B. Jessen: “Über die Werverteilung der Riemannschen Zeta function”. Erste Mitteilung.Acta Math., Vol. 54, (1930), pp. 1–35. Zbl56.0287.01
  3. [3] H. Bohr and B. Jessen: “Über die Werverteilung der Riemannschen Zeta function”. Zweite Mitteilung,Acta Math., Vol. 54, (1932), pp. 1–55. Zbl58.0321.02
  4. [4] J. Genys and A. Laurinčikas: “Value distribution of general Dirichlet series IV”,Lith. Math. J., Vol. 43, No. 3, (2003), pp. 342–358;Lith. Math. J., Vol. 43, No. 3, (2003), pp. 281–294 (in Russian). http://dx.doi.org/10.1023/A:1026189318741 
  5. [5] A. Laurinčikas:Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, 1996. 
  6. [6] A. Laurinčikas: “Value distribution of general Dirichlet series”, In: B. Grigelionis et al. (Eds.):Probab. Theory and Math. Statistics; Proceedings of the seventh Vilnius, TEV, Vilnius, (1999), pp. 405–414. Zbl1095.11503
  7. [7] A. Laurinčikas: “Value distribution of general Dirichlet series. II”,Lith. Math. J., Vol. 41, No. 4, (2001), pp. 351–360. http://dx.doi.org/10.1023/A:1013860521038 
  8. [8] A. Laurinčikas: “Limit theorems for general Dirichlet series”,Theory Stoch. Proc., Vol. 8, No. 24, (2002), pp. 256–268. 
  9. [9] A. Laurinčikas, W. Schwarz and J. Steuding: “Value distribution of general Dirichelet series. III”, In: A. Dubickas et al. (Eds.):Analytic and Probab. Methods in Number Theory. Proc. The Third Palanga Conf., TEV, Vilnius, (2002), pp. 137–156. Zbl1195.11118
  10. [10] A. Laurinčikas and R. Macaitienė: “Discrete limit theorems for general Dirichlet series. I,”Chebyshevski sbornik, Vol. 4, No. 3, (2003), pp. 156–170. Zbl1105.11030
  11. [11] R. Macaitienė: “Discrete limit theorems for general Dirichlet polynomials”,Lith. Math. J., Vol. 42 (spec. issue), (2002), pp. 705–709. 
  12. [12] R. Macaitienė: “Discrete limit theorems for general Dirichlet series. II”,Lith. Math. J., (to appear). Zbl1084.60016
  13. [13] H.L. Montgomery:Topics in multiplicative number theory, Springer, Berlin, 1971. Zbl0216.03501
  14. [14] E.M. Nikishin: “Dirichlet series with independent exponents and certain of their applications”,Matem.sb, Vol. 96, No. 1, (1975), pp. 3–40 (in Russian). 
  15. [15] Y.G. Sinai:Introduction to Ergodic Theory, Princeton Univ. Press, 1976. 
  16. [16] A.A. Tempelman:Ergodic Theorems on Groups, Mokslas, Vilnius, 1986. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.