# Oscillations of linear integro-differential equations

Open Mathematics (2005)

- Volume: 3, Issue: 1, page 98-104
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topRudolf Olach, and Helena Šamajová. "Oscillations of linear integro-differential equations." Open Mathematics 3.1 (2005): 98-104. <http://eudml.org/doc/268891>.

@article{RudolfOlach2005,

abstract = {Sufficient conditions which guarantee that certain linear integro-differential equation cannot have a positive solution are established.},

author = {Rudolf Olach, Helena Šamajová},

journal = {Open Mathematics},

keywords = {34K15; 34C10},

language = {eng},

number = {1},

pages = {98-104},

title = {Oscillations of linear integro-differential equations},

url = {http://eudml.org/doc/268891},

volume = {3},

year = {2005},

}

TY - JOUR

AU - Rudolf Olach

AU - Helena Šamajová

TI - Oscillations of linear integro-differential equations

JO - Open Mathematics

PY - 2005

VL - 3

IS - 1

SP - 98

EP - 104

AB - Sufficient conditions which guarantee that certain linear integro-differential equation cannot have a positive solution are established.

LA - eng

KW - 34K15; 34C10

UR - http://eudml.org/doc/268891

ER -

## References

top- [1] L. Berezansky, E. Braverman: “On oscillation of equations with distributed delay”, Z. Anal. Anwendungen, Vol. 20, (2001), pp. 489–504. Zbl0995.34059
- [2] W.K. Ergen: “Kinetics of the circulating fuel nuclear reactor”,Journal of Applied Physics, Vol.25, (1954), pp.702–711. http://dx.doi.org/10.1063/1.1721720 Zbl0055.23003
- [3] I. Györi, G. Ladas: Oscillation Theory of Delay Differential Equations, Clarendon Press, Oxford, 1991.
- [4] G. Ladas, CH.G. Philos, Y.G. Sficas: “Oscillations of integro-differential equations”, Differential and Integral Equations, Vol. 4, (1991), pp. 1113–1120. Zbl0742.45003
- [5] G.S. Ladde, V. Lakshmikantham, B.G. Zhang: Oscillation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York and Basel, 1987. Zbl0832.34071
- [6] R. Olach: “Observation of a Feedback Mechanism in a Population Model”, Nonlinear Analysis, Vol. 41, (2000), pp. 539–544. http://dx.doi.org/10.1016/S0362-546X(98)00295-8 Zbl0952.34054
- [7] X.H. Tang: “Oscillation of first order delay differential equations with distributed delay”, J. Math. Anal. Appl., Vol. 289, (2004), pp. 367–378. http://dx.doi.org/10.1016/j.jmaa.2003.08.008 Zbl1055.34129