On Conditions for Unrectifiability of a Metric Space
Piotr Hajłasz; Soheil Malekzadeh
Analysis and Geometry in Metric Spaces (2015)
- Volume: 3, Issue: 1, page 1-14, electronic only
- ISSN: 2299-3274
Access Full Article
topAbstract
topHow to cite
topPiotr Hajłasz, and Soheil Malekzadeh. "On Conditions for Unrectifiability of a Metric Space." Analysis and Geometry in Metric Spaces 3.1 (2015): 1-14, electronic only. <http://eudml.org/doc/268901>.
@article{PiotrHajłasz2015,
abstract = {We find necessary and sufficient conditions for a Lipschitz map f : E ⊂ ℝk → X into a metric space to satisfy ℋk(f(E)) = 0. An interesting feature of our approach is that despite the fact that we are dealing with arbitrary metric spaces, we employ a variant of the classical implicit function theorem. Applications include pure unrectifiability of the Heisenberg groups.},
author = {Piotr Hajłasz, Soheil Malekzadeh},
journal = {Analysis and Geometry in Metric Spaces},
keywords = {geometric measure theory; unrectifiability; metric spaces; Sard theorem; Carnot-Carathéodory
spaces; Carnot-Carathéodory spaces},
language = {eng},
number = {1},
pages = {1-14, electronic only},
title = {On Conditions for Unrectifiability of a Metric Space},
url = {http://eudml.org/doc/268901},
volume = {3},
year = {2015},
}
TY - JOUR
AU - Piotr Hajłasz
AU - Soheil Malekzadeh
TI - On Conditions for Unrectifiability of a Metric Space
JO - Analysis and Geometry in Metric Spaces
PY - 2015
VL - 3
IS - 1
SP - 1
EP - 14, electronic only
AB - We find necessary and sufficient conditions for a Lipschitz map f : E ⊂ ℝk → X into a metric space to satisfy ℋk(f(E)) = 0. An interesting feature of our approach is that despite the fact that we are dealing with arbitrary metric spaces, we employ a variant of the classical implicit function theorem. Applications include pure unrectifiability of the Heisenberg groups.
LA - eng
KW - geometric measure theory; unrectifiability; metric spaces; Sard theorem; Carnot-Carathéodory
spaces; Carnot-Carathéodory spaces
UR - http://eudml.org/doc/268901
ER -
References
top- [1] Ambrosio, L., Kirchheim, B.: Rectifiable sets in metric and Banach spaces. Math. Ann. 318 (2000), 527–555. Zbl0966.28002
- [2] Ambrosio, L., Kirchheim, B.: Currents in metric spaces. Acta Math. 185 (2000),1–80. Zbl0984.49025
- [3] Balogh, Z. M., Hajłasz, P., Wildrick, K.: Weak contact equations for mappings into Heisenberg groups. Indiana Univ. Math. J. (to appear). Zbl1316.53034
- [4] David, G., Semmes, S.: Fractured fractals and broken dreams. Self-similar geometry through metric and measure. Oxford Lecture Series in Mathematics and its Applications, 7. The Clarendon Press, Oxford University Press, New York, 1997. Zbl0887.54001
- [5] DiBenedetto, E.: Real analysis. Birkhäuser Advanced Texts: Basler Lehrbücher.
- [Birkhäuser Advanced Texts: Basel Textbooks] Birkhäuser Boston, Inc., Boston, MA, 2002.
- [6] Evans, L. C., Gariepy, R. F.: Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. Zbl0804.28001
- [7] Federer, H.: Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc., New York 1969
- [8] Franchi, B., Gutiérrez, C. E., Wheeden, R. L.: Weighted Sobolev-Poincaré inequalities for Grushin type operators. Comm. Partial Differential Equations 19 (1994), 523–604. Zbl0822.46032
- [9] Gilbarg, D., Trudinger, N. S.: Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Zbl1042.35002
- [10] Gromov, M.: Partial differential relations. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 9. Springer-Verlag, Berlin, 1986. Zbl0651.53001
- [11] Hajłasz, P.: Change of variables formula under minimal assumptions. Colloq. Math. 64 (1993), 93–101. Zbl0840.26009
- [12] Hajłasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101 pp. Zbl0954.46022
- [13] Heinonen, J.: Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001. Zbl0985.46008
- [14] Kirchheim, B.: Rectifiable metric spaces: local structure and regularity of the Hausdorff measure. Proc. Amer. Math. Soc. 121 (1994), 113–123. Zbl0806.28004
- [15] Le Donne, E.: Lipschitz and path isometric embeddings of metric spaces. Geom. Dedicata 166 (2013), 47–66. Zbl1281.30041
- [16] Magnani, V.: Unrectifiability and rigidity in stratified groups. Arch. Math. (Basel) 83 (2004), 568–576. Zbl1062.22019
- [17] Malý, J., Ziemer,W. P.: Fine regularity of solutions of elliptic partial differential equations.Mathematical Surveys and Monographs, 51. American Mathematical Society, Providence, RI, 1997. Zbl0882.35001
- [18] Martio, O., Väisälä, J.: Elliptic equations and maps of bounded length distortion. Math. Ann. 282 (1988), 423–443. Zbl0632.35021
- [19] Mattila, P.: Geometry of sets and measures in Euclidean spaces. Cambridge Studies in Advanced Mathematics, Vol. 44. Cambridge University Press, Cambridge, 1995. Zbl0819.28004
- [20] Monti R.: Distances, boundaries and surface measures in Carnot-Carathéodory spaces, PhD thesis 2001. Available at http://www.math.unipd.it/ monti/PAPERS/TesiFinale.pdf
- [21] Sternberg, S.: Lectures on differential geometry. Second edition. With an appendix by Sternberg and Victor W. Guillemin. Chelsea Publishing Co., New York, 1983.
- [22] Varopoulos, N. Th., Saloff-Coste, L., Coulhon, T.: Analysis and geometry on groups. Cambridge Tracts inMathematics, 100. Cambridge University Press, Cambridge, 1992.
- [23] Whitney, H.: On totally differentiable and smooth functions. Pacific J. Math. 1 (1951), 143–159. Zbl0043.05803
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.