Extended finite operator calculus-an example of algebraization of analysis

Andrzej Kwaśniewski; Ewa Borak

Open Mathematics (2004)

  • Volume: 2, Issue: 5, page 767-792
  • ISSN: 2391-5455

Abstract

top
“A Calculus of Sequences” started in 1936 by Ward constitutes the general scheme for extensions of classical operator calculus of Rota-Mullin considered by many afterwards and after Ward. Because of the notation we shall call the Ward's calculus of sequences in its afterwards elaborated form-a ψ-calculus. The ψ-calculus in parts appears to be almost automatic, natural extension of classical operator calculus of Rota-Mullin or equivalently-of umbral calculus of Roman and Rota. At the same time this calculus is an example of the algebraization of the analysis-here restricted to the algebra of polynomials. Many of the results of ψ-calculus may be extended to Markowsky Q-umbral calculus where Q stands for a generalized difference operator, i.e. the one lowering the degree of any polynomial by one. This is a review article based on the recent first author contributions [1]. As the survey article it is supplemented by the short indicatory glossaries of notation and terms used by Ward [2], Viskov [7, 8], Markowsky [12], Roman [28–32] on one side and the Rota-oriented notation on the other side [9–11, 1, 3, 4, 35] (see also [33]).

How to cite

top

Andrzej Kwaśniewski, and Ewa Borak. "Extended finite operator calculus-an example of algebraization of analysis." Open Mathematics 2.5 (2004): 767-792. <http://eudml.org/doc/268923>.

@article{AndrzejKwaśniewski2004,
abstract = {“A Calculus of Sequences” started in 1936 by Ward constitutes the general scheme for extensions of classical operator calculus of Rota-Mullin considered by many afterwards and after Ward. Because of the notation we shall call the Ward's calculus of sequences in its afterwards elaborated form-a ψ-calculus. The ψ-calculus in parts appears to be almost automatic, natural extension of classical operator calculus of Rota-Mullin or equivalently-of umbral calculus of Roman and Rota. At the same time this calculus is an example of the algebraization of the analysis-here restricted to the algebra of polynomials. Many of the results of ψ-calculus may be extended to Markowsky Q-umbral calculus where Q stands for a generalized difference operator, i.e. the one lowering the degree of any polynomial by one. This is a review article based on the recent first author contributions [1]. As the survey article it is supplemented by the short indicatory glossaries of notation and terms used by Ward [2], Viskov [7, 8], Markowsky [12], Roman [28–32] on one side and the Rota-oriented notation on the other side [9–11, 1, 3, 4, 35] (see also [33]).},
author = {Andrzej Kwaśniewski, Ewa Borak},
journal = {Open Mathematics},
keywords = {05A40; 81S99},
language = {eng},
number = {5},
pages = {767-792},
title = {Extended finite operator calculus-an example of algebraization of analysis},
url = {http://eudml.org/doc/268923},
volume = {2},
year = {2004},
}

TY - JOUR
AU - Andrzej Kwaśniewski
AU - Ewa Borak
TI - Extended finite operator calculus-an example of algebraization of analysis
JO - Open Mathematics
PY - 2004
VL - 2
IS - 5
SP - 767
EP - 792
AB - “A Calculus of Sequences” started in 1936 by Ward constitutes the general scheme for extensions of classical operator calculus of Rota-Mullin considered by many afterwards and after Ward. Because of the notation we shall call the Ward's calculus of sequences in its afterwards elaborated form-a ψ-calculus. The ψ-calculus in parts appears to be almost automatic, natural extension of classical operator calculus of Rota-Mullin or equivalently-of umbral calculus of Roman and Rota. At the same time this calculus is an example of the algebraization of the analysis-here restricted to the algebra of polynomials. Many of the results of ψ-calculus may be extended to Markowsky Q-umbral calculus where Q stands for a generalized difference operator, i.e. the one lowering the degree of any polynomial by one. This is a review article based on the recent first author contributions [1]. As the survey article it is supplemented by the short indicatory glossaries of notation and terms used by Ward [2], Viskov [7, 8], Markowsky [12], Roman [28–32] on one side and the Rota-oriented notation on the other side [9–11, 1, 3, 4, 35] (see also [33]).
LA - eng
KW - 05A40; 81S99
UR - http://eudml.org/doc/268923
ER -

References

top
  1. [1] A.K. Kwaśniewski: “On Simple Characterisations of Sheffer ψ-polynomials and Related Propositions of the Calculus of Sequences”, Bulletin de la Soc. des Sciences et des Letters de Łódź 52 SERIE Reserchers sur les deformations, Vol. 36(45), (2002) (ArXiv: math.CO/0312397). Zbl1088.39509
  2. [2] M. Ward: “A Calculus of Sequences”, Amer. J. Math., Vol. 58(255), (1936). 
  3. [3] A.K. Kwaśniewski: “Towards ψ-extension of Finite Operator Calculus of Rota”, Rep. Math. Phys., Vol. 48(3, (2001) (ArXiv: math.CO/0402078 Feb 2004). 
  4. [4] A.K. Kwaśniewski: “On extended finite operator calculus of Rota and quantum groups”, Integral Transforms and Special Functions, Vol. 2(4), (2001). Zbl1022.39020
  5. [5] R.P. Boas and R.C. Buck Jr.: “Polynomials Defined by Generating Relations”, Am. Math. Monthly, Vol. 63(626), (1959). Zbl0073.05802
  6. [6] R.P. Boas and R.C. Buck Jr.: Polynomial Expansions of Analytic Functions, Springer, Berlin, 1964. Zbl0116.28105
  7. [7] O.V. Viskov: “Operator characterization of generalized Appel polynomials”, Soviet Math. Dokl., Vol. 6(1521), (1975). 
  8. [8] O.V. Viskov: “On the basis in the space of polynomials”, Soviet Math. Dokl., Vol. 19(250), (1978). Zbl0393.15004
  9. [9] G.-C. Rota and R. Mullin: On the foundations of combinatorial theory, III. Theory of Binomial Enumeration in “Graph Theory and Its Applications”, Academic Press, New York, 1970. 
  10. [10] G.C. Rota, D. Kahaner and A. Odlyzko: “On the Foundations of combinatorial theory. VIII. Finite operator calculus”, J. Math. Anal. Appl., Vol. 42(684), (1973). Zbl0267.05004
  11. [11] G.C. Rota: Finite Operator Calculus, Academic Press, New York, 1975. 
  12. [12] G. Markowsky: “Differential operators and the Theory of Binomial Enumeration”, J. Math. Anal. Appl., Vol. 63(145), (1978). Zbl0376.05002
  13. [13] A.K. Kwaśniewski: “Higher Order Recurrences for Analytical Functions of Tchebysheff Type”, Advances in Applied Clifford Algebras, Vol. 9(41), (1999). Zbl1065.11501
  14. [14] O.V. Viskov: “Noncommutative Approach to Classical Problems of Analysis”, Trudy Matiematicz'eskovo Instituta AN SSSR, Vol. 177(21), (1986). Zbl0629.41017
  15. [15] A. Di Bucchianico and D. Loeb: “A Simpler Characterization of Sheffer Polynomials, Studies in Applied Mathematics”, J. Math. Anal. Appl., Vol. 92(1), (1994). Zbl0795.05018
  16. [16] N.Ya. Sonin: “Rjady Ivana Bernulli”, Izw. Akad. Nauk, Vol. 7(337), (1897). 
  17. [17] C. Graves: “On the principles which regulate the interhange of symbols in certain symbolic equations”, Proc. Royal Irish Academy, Vol. 6(144), (1853–1857). 
  18. [18] P. Feinsilver and R. Schott: Algebraic Structures and Operator Calculus, Kluwer Academic Publishers, New York, 1993. Zbl0782.60015
  19. [19] O.V. Viskov: “Newton-Leibnitz Formula and the Taylor Expansion”, Integral Transforms and Special Functions, Vol. 12), (1997). 
  20. [20] S. Pincherle and U. Amaldi: Le operazioni distributive e le loro applicazioni all'analisi, N. Zanichelli, Bologna, 1901. 
  21. [21] S.G. Kurbanov and V.M. Maximov: “Mutual Expansions of Differential operators and Divided Difference Operators”, Dokl. Akad. Nauk Uz. SSSR, Vol. 4(8), (1986). 
  22. [22] A. Di Bucchianico and D. Loeb: Integral Transforms and Special Functions, Vol. 4(49), (1996). Zbl0864.05007
  23. [23] P. Kirschenhofer: “Binomialfolgen, Shefferfolgen und Faktorfolgen in der q-Analysis”, Sitzunber. Abt. II Oster. Ackad. Wiss. Math. Naturw. Kl., Vol. 188(263), (1979). 
  24. [24] A. Di Bucchianico and D. Loeb: “Sequences of Binomial Type with persistent roots”, J. Math. Anal. Appl., Vol. 199(39), (1996). Zbl0853.05016
  25. [25] F.H. Jackson: “q-difference equations”, Quart. J. Pure and Appl. Math., Vol. 41(193), (1910). Zbl41.0502.01
  26. [26] F.H. Jackson: “The q-integral analogous to Borels integral”, Messenger of Math., Vol. 47(57), (1917). 
  27. [27] F.H. Jackson: “Basic Integration”, Quart. J. Math., Vol. 2(1), (1951). Zbl0042.07502
  28. [28] S.M. Roman: “The Theory of Umbral Calculus. I”, J. Math. Anal. Appl., Vol. 87(58), (1982). Zbl0499.05009
  29. [29] S.M. Roman: “The Theory of Umbral Calculus. II”, J. Math. Anal. Appl., Vol. 89(290), (1982). Zbl0526.05007
  30. [30] S.M. Roman: “The Theory of Umbral Calculus. III”, J. Math. Anal. Appl., Vol. 95(528), (1983). Zbl0526.05008
  31. [31] S.M. Roman: The umbral calculus, Academic Press, New York, 1984. Zbl0536.33001
  32. [32] S.R. Roman: “More on the umbral calculus with emphasis on the q-umbral calculus”, J. Math. Anal. Appl., Vol. 107(222), (1985). Zbl0654.05004
  33. [33] A.K. Kwasniewski and E. Gradzka: “Further remarks on ψ-extensions of finite operator calculus”, Rendiconti del Circolo Matematico di Palermo Serie II, Suppl., 69(117), (2002). Zbl1018.05008
  34. [34] J.F. Steffensen: “The poweroid an extension of the mathematical notion of power”, Acta Mathematica, Vol. 73(333), (1941). Zbl0026.20805
  35. [35] A.K. Kwaśniewski: “Main theorems of extended finite operator calculus”, Integral Transforms and Special Functions, Vol. 14(499), (2003). Zbl1041.05007
  36. [36] A.K. Kwaśniewski: “The logarithmic Fib-binomial formula”, Advan. Stud. Contemp. Math., Vol. 9(1), (2004) (19–26 ArXiv: math.CO/0406258 13 June 2004). Zbl1073.11010
  37. [37] A.K. Kwaśniewski: “On ψ-basic Bernoulli-Ward polynomials”, Bull. Soc. Sci. Lett. Lodz, in print (ArXiv: math.CO/0405577 30 May 2004). Zbl1091.33012
  38. [38] A.K. Kwaśniewski: “ψ-Appell polynomials' solutions of the-difference calculus nonhomogeneous equation”, Bull. Soc. Sci. Lett. Lodz, in print (ArXiv: math. CO/0405578 30 May 2004). Zbl1096.39021
  39. [39] A.K. Kwaśniewski: “On ψ-umbral difference Bernoulli-Taylor formula with Cauchy type remainder”, Bull. Soc. Sci. Lett. Lodz, in print (ArXiv: math.GM/0312401 December 2003). 
  40. [40] A.K. Kwaśniewski: “First contact remarks on umbra difference calculus references streams”, Bull. Soc. Sci. Lett. Lodz, in print (ArXiv: math.CO/0403139 v1 8 March 2004). 
  41. [41] A.K. Kwaśniewski: “On extended umbral calculus, oscillator-like algebras and Generalized Clifford Algebra”, Advances in Applied Clifford Algebras, Vol. 11(2), (2001), pp. 267–279 (ArXiv: math.QA/0401083 January 2004). Zbl1047.15015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.