Perturbation of Toeplitz operators and reflexivity

Kamila Kliś-Garlicka

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica (2014)

  • Volume: 13, page 15-18
  • ISSN: 2300-133X

Abstract

top
It was shown that the space of Toeplitz operators perturbated by finite rank operators is 2-hyperreflexive.

How to cite

top

Kamila Kliś-Garlicka. "Perturbation of Toeplitz operators and reflexivity." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 13 (2014): 15-18. <http://eudml.org/doc/268927>.

@article{KamilaKliś2014,
abstract = {It was shown that the space of Toeplitz operators perturbated by finite rank operators is 2-hyperreflexive.},
author = {Kamila Kliś-Garlicka},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
keywords = {reflexive; k-hyperreflexive; finite rank operator; perturbated},
language = {eng},
pages = {15-18},
title = {Perturbation of Toeplitz operators and reflexivity},
url = {http://eudml.org/doc/268927},
volume = {13},
year = {2014},
}

TY - JOUR
AU - Kamila Kliś-Garlicka
TI - Perturbation of Toeplitz operators and reflexivity
JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY - 2014
VL - 13
SP - 15
EP - 18
AB - It was shown that the space of Toeplitz operators perturbated by finite rank operators is 2-hyperreflexive.
LA - eng
KW - reflexive; k-hyperreflexive; finite rank operator; perturbated
UR - http://eudml.org/doc/268927
ER -

References

top
  1. [1] N.T. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208-233. Cited on 17.[Crossref] 
  2. [2] N.T. Arveson, Ten lectures on operator algebras, CBMS Regional Conference Series in Mathematics 55, Amer. Math. Soc., Providence (1984). Cited on 16. 
  3. [3] E.A. Azoff, M. Ptak, A dichotomy for linear spaces of Toeplitz operators, J. Funct. Anal. 156 (1998), 411-428. Cited on 16.[Crossref] 
  4. [4] K. Davidson, The distance to the analytic Toeplitz operators, Illinois J. Math. 31 (1987), 265-273. Cited on 17. 
  5. [5] P.R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London 1967. Cited on 16. 
  6. [6] K. Klis-Garlicka, Rank-one perturbation of Toeplitz operators and reflexivity, Opuscula Math. 32 (2012), 505-509. Cited on 15 and 16. 
  7. [7] K. Klis, M. Ptak, k-hyperreflexive subspaces, Houston J. Math. 32 (2006), 299-313. Cited on 16 and 17. 
  8. [8] J. Kraus, D. Larson, Some applications of a technique for constructing reflexive operator algebras, J. Operator Theory, 13 (1985), 227-236. Cited on 16. 
  9. [9] J. Kraus, D. Larson, Reflexivity and distance formulae, Proc. London Math. Soc. 53 (1986), 340-356. Cited on 15 and 16. 
  10. [10] W.E. Longstaff, On the operation Alg Lat in finite dimensions, Linear Algebra Appl. 27 (1979), 27-29. Cited on 15.[Crossref] 
  11. [11] H. Mustafayev, On hyper-reflexivity of some operator spaces, Internat. J. Math. Math. Sci., 19 (1996), 603-606. Cited on 17.[Crossref] 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.