On the riemann zeta-function and the divisor problem
Open Mathematics (2004)
- Volume: 2, Issue: 4, page 494-508
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAleksandar Ivić. "On the riemann zeta-function and the divisor problem." Open Mathematics 2.4 (2004): 494-508. <http://eudml.org/doc/268928>.
@article{AleksandarIvić2004,
abstract = {Let Δ(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of \[\left| \{\varsigma \left( \{\tfrac\{1\}\{2\} + it\} \right)\} \right|\]
. If \[E^* \left( t \right) = E\left( t \right) - 2\pi \Delta ^* \left( \{t / 2\pi \} \right)\]
with \[\Delta ^* \left( x \right) = - \Delta \left( x \right) + 2\Delta \left( \{2x\} \right) - \tfrac\{1\}\{2\}\Delta \left( \{4x\} \right)\]
, then we obtain \[\int \_0^T \{\left( \{E^* \left( t \right)\} \right)^4 dt \ll \_e T^\{16/9 + \varepsilon \} \} \]
. We also show how our method of proof yields the bound \[\sum \limits \_\{r = 1\}^R \{\left( \{\int \_\{tr - G\}^\{tr + G\} \{\left| \{\varsigma \left( \{\tfrac\{1\}\{2\} + it\} \right)\} \right|^2 dt\} \} \right)^4 \ll \_e T^\{2 + e\} G^\{ - 2\} + RG^4 T^\varepsilon \} \]
, where T 1/5+ε≤G≪T, T},
author = {Aleksandar Ivić},
journal = {Open Mathematics},
keywords = {11N37; 11M06},
language = {eng},
number = {4},
pages = {494-508},
title = {On the riemann zeta-function and the divisor problem},
url = {http://eudml.org/doc/268928},
volume = {2},
year = {2004},
}
TY - JOUR
AU - Aleksandar Ivić
TI - On the riemann zeta-function and the divisor problem
JO - Open Mathematics
PY - 2004
VL - 2
IS - 4
SP - 494
EP - 508
AB - Let Δ(x) denote the error term in the Dirichlet divisor problem, and E(T) the error term in the asymptotic formula for the mean square of \[\left| {\varsigma \left( {\tfrac{1}{2} + it} \right)} \right|\]
. If \[E^* \left( t \right) = E\left( t \right) - 2\pi \Delta ^* \left( {t / 2\pi } \right)\]
with \[\Delta ^* \left( x \right) = - \Delta \left( x \right) + 2\Delta \left( {2x} \right) - \tfrac{1}{2}\Delta \left( {4x} \right)\]
, then we obtain \[\int _0^T {\left( {E^* \left( t \right)} \right)^4 dt \ll _e T^{16/9 + \varepsilon } } \]
. We also show how our method of proof yields the bound \[\sum \limits _{r = 1}^R {\left( {\int _{tr - G}^{tr + G} {\left| {\varsigma \left( {\tfrac{1}{2} + it} \right)} \right|^2 dt} } \right)^4 \ll _e T^{2 + e} G^{ - 2} + RG^4 T^\varepsilon } \]
, where T 1/5+ε≤G≪T, T
LA - eng
KW - 11N37; 11M06
UR - http://eudml.org/doc/268928
ER -
References
top- [1] F.V. Atkinson: “The mean value of the zeta-function on the critical line”, Quant. J. Math. Oxford, Vol. 10, (1939), pp. 122–128. Zbl0022.02002
- [2] F.V. Atkinson: “The mean value of the Riemann zeta-function”, Acta Math., Vol. 81, (1949), pp. 353–376. http://dx.doi.org/10.1007/BF02395027 Zbl0036.18603
- [3] D.R. Heath-Brown: “The twelfth power moment of the Riemann zeta-function”, Quart. J. Math. (Oxford), Vol. 29, (1978), pp. 443–462. Zbl0394.10020
- [4] D.R. Heath-Brown: “The distribution of moments in the Dirichlet divisor problems”, Acta Arith., Vol. 60, (1992), pp. 389–415. Zbl0725.11045
- [5] M.N. Huxley: Area, Lattice Points and Exponential Sums, Oxford Science Publications, Clarendon Press, Oxford, 1996.
- [6] A. Ivić: “Large values of the error term in the divisor problem”, Invent. Math., Vol. 71, (1983), pp. 513–520. http://dx.doi.org/10.1007/BF02095990 Zbl0489.10045
- [7] A. Ivić: The Riemann zeta-function, John Wiley & Sons, New York, 1985.
- [8] A. Ivić: The mean values of the Riemann zeta-function, LNs 82, Tata Inst. of Fundamental Research, Bombay (distr. by Springer Verlag, Berlin etc.), 1991.
- [9] A. Ivić: “Power moments of the Riemann zeta-function over short intervals”. Arch. Mat., Vol. 62, (1994), pp. 418–424. http://dx.doi.org/10.1007/BF01196431 Zbl0793.11022
- [10] A. Ivić: On some problems involving the mean square of |ξ(1/2+it)|. Bull. CXVI Acad. Serbe, Classe des Sciences mathématique, Vol. 23, (1998), pp. 71–76.
- [11] A. Ivić: “Sums of squares of |ξ(1/2+it)| over short intervals”, Max-Planck-Institut für Mathematik, Preprint Series, Vol. 52, (2002), pp. 12.
- [12] A. Ivić and P. Sargos: On the higher moments of the error term in the divisor problem, to appear.
- [13] M. Jutila: “Riemann’s zeta-function and the divisor problem”, Arkiv Mat., Vol. 21, (1983), pp. 75–96; ibid. Vol. 31, (1993), pp. 61–70. http://dx.doi.org/10.1007/BF02384301 Zbl0513.10040
- [14] M. Jutila: “On a formula of Atkinson”, In: Proc. Coll. Soc. J. Bolyai-Budapest’81, Vol. 34, North-Holland, Amsterdam, 1984, pp. 807–823.
- [15] K. Matsumoto: “Recent developments in the mean square theory of the Riemann zeta and other zeta-functions”, In: Number Theory, Birkhäuser, Basel, 2000, pp. 241–286. Zbl0959.11036
- [16] T. Meurman: “A generalization of Atkinson’s formula to L-functions”, Acta Arith., Vol. 47, (1986), pp. 351–370. Zbl0561.10019
- [17] O. Robert and P. Sargos: “Three-dimensional exponential sums with monomials”, J. reine angew. Math. (in print). Zbl1165.11067
- [18] E.C. Titchmarsh: The theory of the Riemann zeta-function, 2nd Ed., University Press, Oxford, 1986.
- [19] K.-M. Tsang: “Higher power moments of Δ(x), E(t) and P(x)”, Proc. London Math. Soc. (3), Vol. 65, (1992), pp. 65–84. Zbl0725.11046
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.