On representation theory and the cohomology rings of irreducible compact hyperkähler manifolds of complex dimension four
Open Mathematics (2003)
- Volume: 1, Issue: 4, page 661-669
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topDaniel Guan. "On representation theory and the cohomology rings of irreducible compact hyperkähler manifolds of complex dimension four." Open Mathematics 1.4 (2003): 661-669. <http://eudml.org/doc/268932>.
@article{DanielGuan2003,
abstract = {In this paper, we continue the study of the possible cohomology rings of compact complex four dimensional irreducible hyperkähler manifolds. In particular, we prove that in the case b 2=7, b 3=0 or 8. The latter was achieved by the Beauville construction.},
author = {Daniel Guan},
journal = {Open Mathematics},
keywords = {14F25; 14M99; 53C26; 53D35; 32Q55},
language = {eng},
number = {4},
pages = {661-669},
title = {On representation theory and the cohomology rings of irreducible compact hyperkähler manifolds of complex dimension four},
url = {http://eudml.org/doc/268932},
volume = {1},
year = {2003},
}
TY - JOUR
AU - Daniel Guan
TI - On representation theory and the cohomology rings of irreducible compact hyperkähler manifolds of complex dimension four
JO - Open Mathematics
PY - 2003
VL - 1
IS - 4
SP - 661
EP - 669
AB - In this paper, we continue the study of the possible cohomology rings of compact complex four dimensional irreducible hyperkähler manifolds. In particular, we prove that in the case b 2=7, b 3=0 or 8. The latter was achieved by the Beauville construction.
LA - eng
KW - 14F25; 14M99; 53C26; 53D35; 32Q55
UR - http://eudml.org/doc/268932
ER -
References
top- [1] F. Bogomolov: “Kähler manifolds with trivial canonical class”, Izv. Akad. Nauk. SSSR Ser. Mat., Vol. 38, (1974), pp. 11–21.
- [2] F. Bogomolov: “The decomposition of Kähler manifolds with a trivial canonical class”, Mat. Sb. (N.S.), Vol. 38, (1974), pp. 573–575.
- [3] F. Bogomolov: “Hamiltonian Kählerian manifolds”, Dolk. Akad. Nauk. SSSR, Vol. 243, (1978), pp. 1101–1104.
- [4] F. Bogomolov: “On the cohomology ring of a simple hyperkähler manifold (on the results of Verbisky)”, Geom. Funct. Anal., Vol. 6, (1996), pp. 612–618. http://dx.doi.org/10.1007/BF02247113 Zbl0862.53050
- [5] A. Beauville: “Variétés Kähleriennes dont la premirè classe de Chern est nulle”, J. Differential Geometry, Vol. 18, (1983), pp. 755–782. Zbl0537.53056
- [6] C. Chevalley: The Algebraic Theory of Spinors, Columbia University Press, New York, 1954.
- [7] D. Guan: “Toward a classification of compact complex homogeneous spaces”, preprint, 1998.
- [8] Z. Guan: “Toward a classification of almost homogeneous manifolds I-linearization of the singular extremal rays”, International J. Math., Vol. 8, (1997), pp. 999–1014. http://dx.doi.org/10.1142/S0129167X97000470 Zbl0907.14015
- [9] D. Guan: “Examples of compact holomorphic symplectic manifolds which are not Kählerian II”, Invent Math., Vol. 121, (1995), pp. 135–145. http://dx.doi.org/10.1007/BF01884293 Zbl0827.32026
- [10] D. Guan: “Examples of compact holomorphic symplectic manifolds which are not Kählerian III”, Intern. J. of Math., Vol. 6, (1995), pp. 709–718. http://dx.doi.org/10.1142/S0129167X95000298 Zbl0857.32018
- [11] D. Guan: “On Riemann-Roch formula and bounds of the Betti numbers of irreducible compact hyperkähler manifold of complex dimension four”, first version in 1999, a part of paper appeared in Math. Res. Letters, Vol. 8, (2001), pp. 663–669. Zbl1011.53039
- [12] J. Humphreys: Introduction to Lie Algebras and Representation Theory, GTM 9, Springer-Verlag, New York, 1987. Zbl0254.17004
- [13] M. Knus, A. Merkurjev, M. Rost, J. Tignol: The Book of Involutions, Colloquium Publications 44, AMS, Providence, Rhode Island, USA, 1998.
- [14] E. Looijenga and V. Lunts: “A Lie algebra attached to a projective variety”, Invent. Math., Vol. 129, (1997), pp. 361–412. http://dx.doi.org/10.1007/s002220050166 Zbl0890.53030
- [15] K. O'Grady: “Desingularized moduli spaces of sheaves on a K3”, J. Reine Angew. Math., Vol. 512, (1999), pp. 49–117. Zbl0928.14029
- [16] K. O'Grady: “A new six dimensional irreducible symplectic variety”, preprint, 2000.
- [17] W. Scharlau: “Quadratic and Hermitian Forms”, Grundlehren der mathematischen Wissenschaften 270, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985.
- [18] S. Salamon: “Riemannian Geometry and Holonomy Groups”, Pitman Research Notes in Mathematics, Series 201, 1989. Zbl0685.53001
- [19] S. Salamon: “On the cohomology of Kähler and hyperkähler manifolds”, Topology, Vol. 35, (1996), pp. 137–155. http://dx.doi.org/10.1016/0040-9383(95)00006-2
- [20] J. Tits: “Représentations linéaires irréducibles d'un groupe réductif sur un corps quelconque”, J. reine angew. Math., Vol. 247, (1971), pp. 196–220. Zbl0227.20015
- [21] M. Verbitsky: “Action of the Lie algebra of SO(5) on the cohomology of a hyperkähler manifold”, Functional Anal. appl., Vol. 24, (1991), pp. 229–230. http://dx.doi.org/10.1007/BF01077967 Zbl0717.53041
- [22] M. Verbitsky: “Cohomology of compact hyperkähler manifolds and its applications”, Geom. Funct. Anal., Vol. 6, (1996), pp. 601–611. http://dx.doi.org/10.1007/BF02247112 Zbl0861.53069
- [23] M. Verbitsky and D. Kaledin: Hyperkähler Manifolds, International Press, Somerville, Massachusetts, USA, 1999.
- [24] S. Yau: “On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I”, Comm. Pure Appl. Math., Vol. 31, (1978), pp. 339–411. Zbl0369.53059
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.