On representation theory and the cohomology rings of irreducible compact hyperkähler manifolds of complex dimension four

Daniel Guan

Open Mathematics (2003)

  • Volume: 1, Issue: 4, page 661-669
  • ISSN: 2391-5455

Abstract

top
In this paper, we continue the study of the possible cohomology rings of compact complex four dimensional irreducible hyperkähler manifolds. In particular, we prove that in the case b 2=7, b 3=0 or 8. The latter was achieved by the Beauville construction.

How to cite

top

Daniel Guan. "On representation theory and the cohomology rings of irreducible compact hyperkähler manifolds of complex dimension four." Open Mathematics 1.4 (2003): 661-669. <http://eudml.org/doc/268932>.

@article{DanielGuan2003,
abstract = {In this paper, we continue the study of the possible cohomology rings of compact complex four dimensional irreducible hyperkähler manifolds. In particular, we prove that in the case b 2=7, b 3=0 or 8. The latter was achieved by the Beauville construction.},
author = {Daniel Guan},
journal = {Open Mathematics},
keywords = {14F25; 14M99; 53C26; 53D35; 32Q55},
language = {eng},
number = {4},
pages = {661-669},
title = {On representation theory and the cohomology rings of irreducible compact hyperkähler manifolds of complex dimension four},
url = {http://eudml.org/doc/268932},
volume = {1},
year = {2003},
}

TY - JOUR
AU - Daniel Guan
TI - On representation theory and the cohomology rings of irreducible compact hyperkähler manifolds of complex dimension four
JO - Open Mathematics
PY - 2003
VL - 1
IS - 4
SP - 661
EP - 669
AB - In this paper, we continue the study of the possible cohomology rings of compact complex four dimensional irreducible hyperkähler manifolds. In particular, we prove that in the case b 2=7, b 3=0 or 8. The latter was achieved by the Beauville construction.
LA - eng
KW - 14F25; 14M99; 53C26; 53D35; 32Q55
UR - http://eudml.org/doc/268932
ER -

References

top
  1. [1] F. Bogomolov: “Kähler manifolds with trivial canonical class”, Izv. Akad. Nauk. SSSR Ser. Mat., Vol. 38, (1974), pp. 11–21. 
  2. [2] F. Bogomolov: “The decomposition of Kähler manifolds with a trivial canonical class”, Mat. Sb. (N.S.), Vol. 38, (1974), pp. 573–575. 
  3. [3] F. Bogomolov: “Hamiltonian Kählerian manifolds”, Dolk. Akad. Nauk. SSSR, Vol. 243, (1978), pp. 1101–1104. 
  4. [4] F. Bogomolov: “On the cohomology ring of a simple hyperkähler manifold (on the results of Verbisky)”, Geom. Funct. Anal., Vol. 6, (1996), pp. 612–618. http://dx.doi.org/10.1007/BF02247113 Zbl0862.53050
  5. [5] A. Beauville: “Variétés Kähleriennes dont la premirè classe de Chern est nulle”, J. Differential Geometry, Vol. 18, (1983), pp. 755–782. Zbl0537.53056
  6. [6] C. Chevalley: The Algebraic Theory of Spinors, Columbia University Press, New York, 1954. 
  7. [7] D. Guan: “Toward a classification of compact complex homogeneous spaces”, preprint, 1998. 
  8. [8] Z. Guan: “Toward a classification of almost homogeneous manifolds I-linearization of the singular extremal rays”, International J. Math., Vol. 8, (1997), pp. 999–1014. http://dx.doi.org/10.1142/S0129167X97000470 Zbl0907.14015
  9. [9] D. Guan: “Examples of compact holomorphic symplectic manifolds which are not Kählerian II”, Invent Math., Vol. 121, (1995), pp. 135–145. http://dx.doi.org/10.1007/BF01884293 Zbl0827.32026
  10. [10] D. Guan: “Examples of compact holomorphic symplectic manifolds which are not Kählerian III”, Intern. J. of Math., Vol. 6, (1995), pp. 709–718. http://dx.doi.org/10.1142/S0129167X95000298 Zbl0857.32018
  11. [11] D. Guan: “On Riemann-Roch formula and bounds of the Betti numbers of irreducible compact hyperkähler manifold of complex dimension four”, first version in 1999, a part of paper appeared in Math. Res. Letters, Vol. 8, (2001), pp. 663–669. Zbl1011.53039
  12. [12] J. Humphreys: Introduction to Lie Algebras and Representation Theory, GTM 9, Springer-Verlag, New York, 1987. Zbl0254.17004
  13. [13] M. Knus, A. Merkurjev, M. Rost, J. Tignol: The Book of Involutions, Colloquium Publications 44, AMS, Providence, Rhode Island, USA, 1998. 
  14. [14] E. Looijenga and V. Lunts: “A Lie algebra attached to a projective variety”, Invent. Math., Vol. 129, (1997), pp. 361–412. http://dx.doi.org/10.1007/s002220050166 Zbl0890.53030
  15. [15] K. O'Grady: “Desingularized moduli spaces of sheaves on a K3”, J. Reine Angew. Math., Vol. 512, (1999), pp. 49–117. Zbl0928.14029
  16. [16] K. O'Grady: “A new six dimensional irreducible symplectic variety”, preprint, 2000. 
  17. [17] W. Scharlau: “Quadratic and Hermitian Forms”, Grundlehren der mathematischen Wissenschaften 270, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985. 
  18. [18] S. Salamon: “Riemannian Geometry and Holonomy Groups”, Pitman Research Notes in Mathematics, Series 201, 1989. Zbl0685.53001
  19. [19] S. Salamon: “On the cohomology of Kähler and hyperkähler manifolds”, Topology, Vol. 35, (1996), pp. 137–155. http://dx.doi.org/10.1016/0040-9383(95)00006-2 
  20. [20] J. Tits: “Représentations linéaires irréducibles d'un groupe réductif sur un corps quelconque”, J. reine angew. Math., Vol. 247, (1971), pp. 196–220. Zbl0227.20015
  21. [21] M. Verbitsky: “Action of the Lie algebra of SO(5) on the cohomology of a hyperkähler manifold”, Functional Anal. appl., Vol. 24, (1991), pp. 229–230. http://dx.doi.org/10.1007/BF01077967 Zbl0717.53041
  22. [22] M. Verbitsky: “Cohomology of compact hyperkähler manifolds and its applications”, Geom. Funct. Anal., Vol. 6, (1996), pp. 601–611. http://dx.doi.org/10.1007/BF02247112 Zbl0861.53069
  23. [23] M. Verbitsky and D. Kaledin: Hyperkähler Manifolds, International Press, Somerville, Massachusetts, USA, 1999. 
  24. [24] S. Yau: “On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I”, Comm. Pure Appl. Math., Vol. 31, (1978), pp. 339–411. Zbl0369.53059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.