Normalizers and self-normalizing subgroups II
Open Mathematics (2011)
- Volume: 9, Issue: 6, page 1317-1332
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topBoris Širola. "Normalizers and self-normalizing subgroups II." Open Mathematics 9.6 (2011): 1317-1332. <http://eudml.org/doc/268938>.
@article{BorisŠirola2011,
abstract = {Let $\mathbb \{K\}$ be a field, G a reductive algebraic $\mathbb \{K\}$-group, and G 1 ≤ G a reductive subgroup. For G 1 ≤ G, the corresponding groups of $\mathbb \{K\}$-points, we study the normalizer N = N G(G 1). In particular, for a standard embedding of the odd orthogonal group G 1 = SO(m, $\mathbb \{K\}$) in G = SL(m, $\mathbb \{K\}$) we have N ≅ G 1 ⋊ µm($\mathbb \{K\}$), the semidirect product of G 1 by the group of m-th roots of unity in $\mathbb \{K\}$. The normalizers of the even orthogonal and symplectic subgroup of SL(2n, $\mathbb \{K\}$) were computed in [Širola B., Normalizers and self-normalizing subgroups, Glas. Mat. Ser. III (in press)], leaving the proof in the odd orthogonal case to be completed here. Also, for G = GL(m, $\mathbb \{K\}$) and G 1 = O(m, $\mathbb \{K\}$) we have N ≅ G 1 ⋊ $\mathbb \{K\}$ ×. In both of these cases, N is a self-normalizing subgroup of G.},
author = {Boris Širola},
journal = {Open Mathematics},
keywords = {Normalizer; Self-normalizing subgroup; Centralizer; Symplectic group; Even orthogonal group; Odd orthogonal group; normalizers; self-normalizing subgroups; centralizers; symplectic group; even orthogonal groups; odd orthogonal groups; reductive algebraic groups},
language = {eng},
number = {6},
pages = {1317-1332},
title = {Normalizers and self-normalizing subgroups II},
url = {http://eudml.org/doc/268938},
volume = {9},
year = {2011},
}
TY - JOUR
AU - Boris Širola
TI - Normalizers and self-normalizing subgroups II
JO - Open Mathematics
PY - 2011
VL - 9
IS - 6
SP - 1317
EP - 1332
AB - Let $\mathbb {K}$ be a field, G a reductive algebraic $\mathbb {K}$-group, and G 1 ≤ G a reductive subgroup. For G 1 ≤ G, the corresponding groups of $\mathbb {K}$-points, we study the normalizer N = N G(G 1). In particular, for a standard embedding of the odd orthogonal group G 1 = SO(m, $\mathbb {K}$) in G = SL(m, $\mathbb {K}$) we have N ≅ G 1 ⋊ µm($\mathbb {K}$), the semidirect product of G 1 by the group of m-th roots of unity in $\mathbb {K}$. The normalizers of the even orthogonal and symplectic subgroup of SL(2n, $\mathbb {K}$) were computed in [Širola B., Normalizers and self-normalizing subgroups, Glas. Mat. Ser. III (in press)], leaving the proof in the odd orthogonal case to be completed here. Also, for G = GL(m, $\mathbb {K}$) and G 1 = O(m, $\mathbb {K}$) we have N ≅ G 1 ⋊ $\mathbb {K}$ ×. In both of these cases, N is a self-normalizing subgroup of G.
LA - eng
KW - Normalizer; Self-normalizing subgroup; Centralizer; Symplectic group; Even orthogonal group; Odd orthogonal group; normalizers; self-normalizing subgroups; centralizers; symplectic group; even orthogonal groups; odd orthogonal groups; reductive algebraic groups
UR - http://eudml.org/doc/268938
ER -
References
top- [1] Borel A., Linear Algebraic Groups, 2nd ed., Grad. Texts in Math., 126, Springer, New York, 1991 http://dx.doi.org/10.1007/978-1-4612-0941-6
- [2] Brylinski R., Kostant B., Nilpotent orbits, normality, and Hamiltonian group actions, J. Amer. Math. Soc., 1994, 7(2), 269–298 Zbl0826.22017
- [3] Dixmier J., Enveloping Algebras, Grad. Stud. Math., 11, American Mathematical Society, Providence, 1996 Zbl0867.17001
- [4] Howe R., Tan E.-C., Willenbring J.F., Stable branching rules for classical symmetric pairs, Trans. Amer. Math. Soc., 2005, 357(4), 1601–1626 http://dx.doi.org/10.1090/S0002-9947-04-03722-5 Zbl1069.22006
- [5] Humphreys J.E., Linear Algebraic Groups, Grad. Texts in Math., 21, Springer, New York-Heidelberg, 1975 Zbl0325.20039
- [6] Humphreys J.E., Conjugacy Classes in Semisimple Algebraic Groups, Math. Surveys Monogr., 43, American Mathematical Society, Providence, 1995 Zbl0834.20048
- [7] Jantzen J.C., Nilpotent orbits in representation theory, In: Lie Theory, Progr. Math., 228, Birkhäuser, Boston, 2004, 1–211 http://dx.doi.org/10.1007/978-0-8176-8192-0_1 Zbl1169.14319
- [8] Kirillov A.A., Lectures on the Orbit Method, Grad. Stud. Math., 64, American Mathematical Society, Providence, 2004 Zbl1229.22003
- [9] Knapp A.W., Geometric interpretations of two branching theorems of D. E. Littlewood, J. Algebra, 2003, 270(2), 728–754 http://dx.doi.org/10.1016/j.jalgebra.2002.11.001 Zbl1038.22005
- [10] Kobayashi T., Discrete decomposability of the restriction of A q(λ) with respect to reductive subgroups III. Restriction of Harish-Chandra modules and associated varieties, Invent. Math., 1998, 131(2), 229–256 http://dx.doi.org/10.1007/s002220050203 Zbl0907.22016
- [11] Kobayashi T., Discretely decomposable restrictions of unitary representations of reductive Lie groups - examples and conjectures, In: Analysis on Homogeneous Spaces and Representation Theory of Lie Groups, Okayama-Kyoto, 1997, Adv. Stud. Pure Math., 26, Mathematical Society of Japan, Tokyo, 2000, 99–127 Zbl0959.22009
- [12] Kostant B., A branching law for subgroups fixed by an involution and a noncompact analogue of the Borel-Weil theorem, In: Noncommutative Harmonic Analysis, Progr. Math., 220, Birkhäuser, Boston, 2004, 291–353 http://dx.doi.org/10.1007/978-0-8176-8204-0_11 Zbl1162.17304
- [13] Levasseur T., Smith S.P., Primitive ideals and nilpotent orbits in type G 2, J. Algebra, 1988, 114(1), 81–105 http://dx.doi.org/10.1016/0021-8693(88)90214-1 Zbl0644.17005
- [14] Richardson R.W. Jr., Conjugacy classes in Lie algebras and algebraic groups, Ann. of Math., 1967, 86(1), 1–15 http://dx.doi.org/10.2307/1970359
- [15] Širola B., Pairs of semisimple Lie algebras and their maximal reductive subalgebras, Algebr. Represent. Theory, 2008, 11(3), 233–250 http://dx.doi.org/10.1007/s10468-007-9068-z Zbl1163.17008
- [16] Širola B., Pairs of Lie algebras and their self-normalizing reductive subalgebras, J. Lie Theory, 2009, 19(4), 735–766 Zbl1257.17007
- [17] Širola B., Normalizers and self-normalizing subgroups, Glas. Mat. Ser. III (in press) Zbl1241.20055
- [18] Širola B., On centralizers and normalizers for groups (in preparation)
- [19] Springer T.A., Linear Algebraic Groups, 2nd ed., Progr. Math., 9, Birkhäuser, Boston, 1998 http://dx.doi.org/10.1007/978-0-8176-4840-4 Zbl0927.20024
- [20] Vogan D.A. Jr., The unitary dual of G 2, Invent. Math., 1994, 116, 677–791 http://dx.doi.org/10.1007/BF01231578 Zbl0808.22003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.