Maximal pseudocompact spaces and the Preiss-Simon property
Ofelia Alas; Vladimir Tkachuk; Richard Wilson
Open Mathematics (2014)
- Volume: 12, Issue: 3, page 500-509
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topOfelia Alas, Vladimir Tkachuk, and Richard Wilson. "Maximal pseudocompact spaces and the Preiss-Simon property." Open Mathematics 12.3 (2014): 500-509. <http://eudml.org/doc/268953>.
@article{OfeliaAlas2014,
abstract = {We study maximal pseudocompact spaces calling them also MP-spaces. We show that the product of a maximal pseudocompact space and a countable compact space is maximal pseudocompact. If X is hereditarily maximal pseudocompact then X × Y is hereditarily maximal pseudocompact for any first countable compact space Y. It turns out that hereditary maximal pseudocompactness coincides with the Preiss-Simon property in countably compact spaces. In compact spaces, hereditary MP-property is invariant under continuous images while this is not true for the class of countably compact spaces. We prove that every Fréchet-Urysohn compact space is homeomorphic to a retract of a compact MP-space. We also give a ZFC example of a Fréchet-Urysohn compact space which is not maximal pseudocompact. Therefore maximal pseudocompactness is not preserved by continuous images in the class of compact spaces.},
author = {Ofelia Alas, Vladimir Tkachuk, Richard Wilson},
journal = {Open Mathematics},
keywords = {Maximal pseudocompact space; Countably compact space; MP-space; Compact space; Pseudocompact space; Preiss-Simon property; maximal pseudocompact space; countably compact space; compact space; pseudocompact space},
language = {eng},
number = {3},
pages = {500-509},
title = {Maximal pseudocompact spaces and the Preiss-Simon property},
url = {http://eudml.org/doc/268953},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Ofelia Alas
AU - Vladimir Tkachuk
AU - Richard Wilson
TI - Maximal pseudocompact spaces and the Preiss-Simon property
JO - Open Mathematics
PY - 2014
VL - 12
IS - 3
SP - 500
EP - 509
AB - We study maximal pseudocompact spaces calling them also MP-spaces. We show that the product of a maximal pseudocompact space and a countable compact space is maximal pseudocompact. If X is hereditarily maximal pseudocompact then X × Y is hereditarily maximal pseudocompact for any first countable compact space Y. It turns out that hereditary maximal pseudocompactness coincides with the Preiss-Simon property in countably compact spaces. In compact spaces, hereditary MP-property is invariant under continuous images while this is not true for the class of countably compact spaces. We prove that every Fréchet-Urysohn compact space is homeomorphic to a retract of a compact MP-space. We also give a ZFC example of a Fréchet-Urysohn compact space which is not maximal pseudocompact. Therefore maximal pseudocompactness is not preserved by continuous images in the class of compact spaces.
LA - eng
KW - Maximal pseudocompact space; Countably compact space; MP-space; Compact space; Pseudocompact space; Preiss-Simon property; maximal pseudocompact space; countably compact space; compact space; pseudocompact space
UR - http://eudml.org/doc/268953
ER -
References
top- [1] Arhangel’skii A.V., Structure and classification of topological spaces and cardinal invariants, Russian Math. Surveys, 1978, 33(6), 33–96 http://dx.doi.org/10.1070/RM1978v033n06ABEH003884
- [2] Arhangel’skii A.V., Relations among the invariants of topological groups and their subspaces, Russian Math. Surveys, 1980, 35(3), 1–23 http://dx.doi.org/10.1070/RM1980v035n03ABEH001674
- [3] Alas O.T., Sanchis M., Wilson R.G., Maximal pseudocompact and maximal R-closed spaces, Houston J. Math., 2012, 38(4), 1355–1367 Zbl1271.54061
- [4] Cameron D.E., A class of maximal topologies, Pacific J. Math., 1977, 70(1), 101–104 http://dx.doi.org/10.2140/pjm.1977.70.101 Zbl0335.54022
- [5] Efimov B.A., Dyadic bicompacta, Trudy Moskov. Mat. Obshch., 1965, 14, 211–247 (in Russian)
- [6] Engelking R., General Topology, IMPAN Monogr. Mat., 60, PWN, Warsaw, 1977
- [7] Fabian M., Gâteaux Differentiability of Convex Functions and Topology, Canad. Math. Soc. Ser. Monogr. Adv. Texts, John Wiley & Sons, New York, 1997 Zbl0883.46011
- [8] Gillman L., Jerison M., Rings of Continuous Functions, The University Series in Higher Mathematics, Van Nostrand, Princeton, 1960 http://dx.doi.org/10.1007/978-1-4615-7819-2
- [9] Gruenhage G., Generalized metric spaces, In: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 423–501
- [10] Knaster B., Urbanik K., Sur les espaces complets séparables de dimension 0, Fund. Math., 1953, 40, 194–202
- [11] Preiss D., Simon P., A weakly pseudocompact subspace of Banach space is weakly compact, Comment. Math. Univ. Carolinae, 1974, 15(4), 603–609 Zbl0306.54033
- [12] Porter J.R., Stephenson R.M. Jr., Woods R.G., Maximal feebly compact spaces, Topology Appl., 1993, 52(3), 203–219 http://dx.doi.org/10.1016/0166-8641(93)90103-K
- [13] Porter J.R., Stephenson R.M. Jr., Woods R.G., Maximal pseudocompact spaces, Comment. Math. Univ. Carolinae, 1994, 35(1), 127–145 Zbl0804.54004
- [14] Reznichenko E.A., Extension of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups, Topology Appl., 1994, 59(3), 233–244 http://dx.doi.org/10.1016/0166-8641(94)90021-3 Zbl0835.22001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.