A description of Banach space-valued Orlicz hearts

Coenraad Labuschagne; Theresa Offwood

Open Mathematics (2010)

  • Volume: 8, Issue: 6, page 1109-1119
  • ISSN: 2391-5455

Abstract

top
Let Y be a Banach space, (Ω, Σ; μ) a probability space and φ a finite Young function. It is shown that the Y-valued Orlicz heart H φ(μ, Y) is isometrically isomorphic to the l-completed tensor product H ϕ μ ˜ l Y of the scalar-valued Orlicz heart Hφ(μ) and Y, in the sense of Chaney and Schaefer. As an application, a characterization is given of the equality of H ϕ μ ˜ l Y * and H ϕ μ * ˜ l Y * in terms of the Radon-Nikodým property on Y. Convergence of norm-bounded martingales in H φ(μ, Y) is characterized in terms of the Radon-Nikodým property on Y. Using the associativity of the l-norm, an alternative proof is given of the known fact that for any separable Banach lattice E and any Banach space Y, E and Y have the Radon-Nikodým property if and only if E ˜ l Y has the Radon-Nikodým property. As a corollary, the Radon-Nikodým property in H φ(μ, Y) is described in terms of the Radon-Nikodým property on H φ(μ) and Y.

How to cite

top

Coenraad Labuschagne, and Theresa Offwood. "A description of Banach space-valued Orlicz hearts." Open Mathematics 8.6 (2010): 1109-1119. <http://eudml.org/doc/268954>.

@article{CoenraadLabuschagne2010,
abstract = {Let Y be a Banach space, (Ω, Σ; μ) a probability space and φ a finite Young function. It is shown that the Y-valued Orlicz heart H φ(μ, Y) is isometrically isomorphic to the l-completed tensor product \[ H\_\varphi \left( \mu \right)\tilde\{\otimes \}\_l Y \] of the scalar-valued Orlicz heart Hφ(μ) and Y, in the sense of Chaney and Schaefer. As an application, a characterization is given of the equality of \[ \left( \{H\_\varphi \left( \mu \right)\tilde\{\otimes \}\_l Y\} \right)* \] and \[ H\_\varphi \left( \mu \right)*\tilde\{\otimes \}\_l Y* \] in terms of the Radon-Nikodým property on Y. Convergence of norm-bounded martingales in H φ(μ, Y) is characterized in terms of the Radon-Nikodým property on Y. Using the associativity of the l-norm, an alternative proof is given of the known fact that for any separable Banach lattice E and any Banach space Y, E and Y have the Radon-Nikodým property if and only if \[ E\tilde\{\otimes \}\_l Y \] has the Radon-Nikodým property. As a corollary, the Radon-Nikodým property in H φ(μ, Y) is described in terms of the Radon-Nikodým property on H φ(μ) and Y.},
author = {Coenraad Labuschagne, Theresa Offwood},
journal = {Open Mathematics},
keywords = {Bochner norm; l-norm; Banach lattice; Banach space; Martingale; Orlicz space; Orlicz heart; Tensor product; Radon-Nikodým property; -norm; martingale; tensor product},
language = {eng},
number = {6},
pages = {1109-1119},
title = {A description of Banach space-valued Orlicz hearts},
url = {http://eudml.org/doc/268954},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Coenraad Labuschagne
AU - Theresa Offwood
TI - A description of Banach space-valued Orlicz hearts
JO - Open Mathematics
PY - 2010
VL - 8
IS - 6
SP - 1109
EP - 1119
AB - Let Y be a Banach space, (Ω, Σ; μ) a probability space and φ a finite Young function. It is shown that the Y-valued Orlicz heart H φ(μ, Y) is isometrically isomorphic to the l-completed tensor product \[ H_\varphi \left( \mu \right)\tilde{\otimes }_l Y \] of the scalar-valued Orlicz heart Hφ(μ) and Y, in the sense of Chaney and Schaefer. As an application, a characterization is given of the equality of \[ \left( {H_\varphi \left( \mu \right)\tilde{\otimes }_l Y} \right)* \] and \[ H_\varphi \left( \mu \right)*\tilde{\otimes }_l Y* \] in terms of the Radon-Nikodým property on Y. Convergence of norm-bounded martingales in H φ(μ, Y) is characterized in terms of the Radon-Nikodým property on Y. Using the associativity of the l-norm, an alternative proof is given of the known fact that for any separable Banach lattice E and any Banach space Y, E and Y have the Radon-Nikodým property if and only if \[ E\tilde{\otimes }_l Y \] has the Radon-Nikodým property. As a corollary, the Radon-Nikodým property in H φ(μ, Y) is described in terms of the Radon-Nikodým property on H φ(μ) and Y.
LA - eng
KW - Bochner norm; l-norm; Banach lattice; Banach space; Martingale; Orlicz space; Orlicz heart; Tensor product; Radon-Nikodým property; -norm; martingale; tensor product
UR - http://eudml.org/doc/268954
ER -

References

top
  1. [1] Birnbaum Z., Orlicz W., Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math., 1931, 3, 1–67 
  2. [2] Bombal F., On l 1 subspaces of Orlicz vector-valued function spaces, Math. Proc. Cambridge Philos. Soc., 1987, 101, 107–112 http://dx.doi.org/10.1017/S0305004100066445 Zbl0634.46019
  3. [3] Chaney J., Banach lattices of compact maps, Math. Z., 1972, 129(1), 1–19 http://dx.doi.org/10.1007/BF01229536 Zbl0231.46020
  4. [4] Cullender S.F., Labuschagne C.C.A., A description of norm-convergent martingales on vector-valued L p-spaces, J. Math. Anal. Appl., 2006, 323(1), 119–130 http://dx.doi.org/10.1016/j.jmaa.2005.10.032 Zbl1143.46020
  5. [5] Cullender S.F., Labuschagne C.C.A., Convergent martingales of operators and the Radon Nikodým property in Banach spaces, Proc. Amer. Math. Soc., 2008, 136(11), 3883–3893 http://dx.doi.org/10.1090/S0002-9939-08-09537-3 Zbl1167.46014
  6. [6] Dinculeanu N., Integral representation of linear operators. I, II, Stud. Cerc. Mat., 1966, 18, 349–385, 483–536 
  7. [7] Diestel J., An approach to the theory of Orlicz spaces of Lesbesgue-Bochner measurable functions, Math. Ann., 1970, 186(1), 20–33 http://dx.doi.org/10.1007/BF01350637 Zbl0182.45502
  8. [8] Diestel J., On the representation of bounded, linear operators from Orlicz spaces of Lebesgue-Bochner measurable functions to any Banach space, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 1970, 18, 375–378 Zbl0199.45002
  9. [9] Diestel J., Some remarks on subspaces of Orlicz spaces of vector-valued finitely additive functions, Studia Math., 1971, 39, 161–164 Zbl0213.39701
  10. [10] Diestel J., Uhl J.J., Vector Measures, Math. Surveys Monogr., 15, AMS, Providence, 1977 
  11. [11] Edgar G.A., Sucheston L., Stopping Times and Directed Processes, Encyclopedia Math. Appl., 47, Cambridge University Press, Cambridge, 1992 Zbl0779.60032
  12. [12] Greub W.H., Multilinear Algebra, Grundlehren Math. Wiss., 136, Springer, Berlin-Heidelberg-New York, 1967 
  13. [13] Jeurnink G.A.M., Integration of functions with values in a Banach lattice, Ph.D. thesis, University of Nijmegen, the Netherlands, 1982 
  14. [14] Krasnosel’skii M.A., Rutitskii Ya.B., Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961 
  15. [15] Labuschagne C.C.A., A note on the order continuity of the norm of E ˜ m F , Arch. Math., 1994, 62(4), 335–337 http://dx.doi.org/10.1007/BF01201786 Zbl0804.46084
  16. [16] Labuschagne C.C.A., Riesz reasonable cross norms on tensor products of Banach lattices, Quaest. Math., 2004, 27(3), 243–266 Zbl1079.46010
  17. [17] Labuschagne C.C.A., Characterizing the one-sided tensor norms Δp and tΔp, Quaest. Math., 2004, 27(4), 339–363 Zbl1079.46009
  18. [18] Labuschagne C.C.A., A Dodds-Fremlin property for Asplund and Radon-Nikodým operators, Positivity, 2006, 10(2), 391–407 http://dx.doi.org/10.1007/s11117-005-0023-0 Zbl1108.47037
  19. [19] Lindenstrauss Y., Tzafriri L., Classical Banach Spaces, I and II, Ergeb. Math. Grenzgeb., 92 and 97, Springer, Berlin-Heidelberg-New York, 1977 and 1979 Zbl0362.46013
  20. [20] Luxemburg W.A.J., Banach function spaces, Ph.D. thesis, Technische Hogeschool te Delft, 1955 Zbl0068.09204
  21. [21] Meyer-Nieberg P., Banach Lattices, Universitext, Springer, Berlin-Heidelberg-New York, 1991 Zbl0743.46015
  22. [22] Orlicz W., Über eine gewisse Klasse von Räumen vom Typus B, Bull. Int. Acad. Polon. Sci. A, 1932, 8–9, 207–220 
  23. [23] Popa N., Die Permanenzeigenschaften der Tensorprodukte von Banachverbänden, In: Romanian-Finnish Seminar on Complex Analysis, Bucharest, 1976, Lecture Notes in Math., 743, Springer, Berlin, 1979, 627–647 
  24. [24] Rao M.M., Ren Z.D., Applications of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 250, Marcel Dekker, New York, 2002 Zbl0997.46027
  25. [25] Schaefer H.H., Banach Lattices and Positive Operators, Grundlehren Math. Wiss., 215, Springer, Berlin-Heidelberg-New York, 1974 Zbl0296.47023
  26. [26] Sundaresan K., The Radon-Nikodym theorem for Lebesgue-Bochner function spaces, J. Funct. Anal., 1977, 24(3), 276–279 http://dx.doi.org/10.1016/0022-1236(77)90058-1 Zbl0341.46019
  27. [27] Talagrand M., La structure des espaces de Banach réticulés ayant la propriété de Radon-Nikodym, Israel J. Math., 1983, 44(3), 213–220 http://dx.doi.org/10.1007/BF02760972 Zbl0523.46016
  28. [28] Talagrand M., Pettis Integral and Measure Theory, Mem. Amer. Math. Soc., 307, AMS, Providence, 1984 
  29. [29] Turett B., Uhl J.J., L p(μ, X) (1 < p < ∞) has the Radon-Nikodým property if X does by martingales, Proc. Amer. Math. Soc., 1976, 61(2), 347–350 Zbl0349.46038
  30. [30] Uhl J.J., Applications of Radon-Nikodým theorems to martingale convergence, Trans. Amer. Math. Soc., 1969, 145, 271–285 Zbl0211.21903
  31. [31] Uhl J.J., The Radon-Nikodým theorem and the mean convergence of Banach space valued martingales, Proc. Amer. Math. Soc., 1969, 21(1), 139–144 Zbl0186.20301
  32. [32] Zaanen A.C., Linear Analysis, Interscience, New York & North-Holland, Amsterdam & Noordhoff, Groningen, 1953 Zbl0053.25601
  33. [33] Zaanen A.C., Riesz Spaces II, North-Holland Math. Library, 30, North-Holland, Amsterdam-New York-Oxford, 1983 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.