A description of Banach space-valued Orlicz hearts
Coenraad Labuschagne; Theresa Offwood
Open Mathematics (2010)
- Volume: 8, Issue: 6, page 1109-1119
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topCoenraad Labuschagne, and Theresa Offwood. "A description of Banach space-valued Orlicz hearts." Open Mathematics 8.6 (2010): 1109-1119. <http://eudml.org/doc/268954>.
@article{CoenraadLabuschagne2010,
abstract = {Let Y be a Banach space, (Ω, Σ; μ) a probability space and φ a finite Young function. It is shown that the Y-valued Orlicz heart H φ(μ, Y) is isometrically isomorphic to the l-completed tensor product \[ H\_\varphi \left( \mu \right)\tilde\{\otimes \}\_l Y \]
of the scalar-valued Orlicz heart Hφ(μ) and Y, in the sense of Chaney and Schaefer. As an application, a characterization is given of the equality of \[ \left( \{H\_\varphi \left( \mu \right)\tilde\{\otimes \}\_l Y\} \right)* \]
and \[ H\_\varphi \left( \mu \right)*\tilde\{\otimes \}\_l Y* \]
in terms of the Radon-Nikodým property on Y. Convergence of norm-bounded martingales in H φ(μ, Y) is characterized in terms of the Radon-Nikodým property on Y. Using the associativity of the l-norm, an alternative proof is given of the known fact that for any separable Banach lattice E and any Banach space Y, E and Y have the Radon-Nikodým property if and only if \[ E\tilde\{\otimes \}\_l Y \]
has the Radon-Nikodým property. As a corollary, the Radon-Nikodým property in H φ(μ, Y) is described in terms of the Radon-Nikodým property on H φ(μ) and Y.},
author = {Coenraad Labuschagne, Theresa Offwood},
journal = {Open Mathematics},
keywords = {Bochner norm; l-norm; Banach lattice; Banach space; Martingale; Orlicz space; Orlicz heart; Tensor product; Radon-Nikodým property; -norm; martingale; tensor product},
language = {eng},
number = {6},
pages = {1109-1119},
title = {A description of Banach space-valued Orlicz hearts},
url = {http://eudml.org/doc/268954},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Coenraad Labuschagne
AU - Theresa Offwood
TI - A description of Banach space-valued Orlicz hearts
JO - Open Mathematics
PY - 2010
VL - 8
IS - 6
SP - 1109
EP - 1119
AB - Let Y be a Banach space, (Ω, Σ; μ) a probability space and φ a finite Young function. It is shown that the Y-valued Orlicz heart H φ(μ, Y) is isometrically isomorphic to the l-completed tensor product \[ H_\varphi \left( \mu \right)\tilde{\otimes }_l Y \]
of the scalar-valued Orlicz heart Hφ(μ) and Y, in the sense of Chaney and Schaefer. As an application, a characterization is given of the equality of \[ \left( {H_\varphi \left( \mu \right)\tilde{\otimes }_l Y} \right)* \]
and \[ H_\varphi \left( \mu \right)*\tilde{\otimes }_l Y* \]
in terms of the Radon-Nikodým property on Y. Convergence of norm-bounded martingales in H φ(μ, Y) is characterized in terms of the Radon-Nikodým property on Y. Using the associativity of the l-norm, an alternative proof is given of the known fact that for any separable Banach lattice E and any Banach space Y, E and Y have the Radon-Nikodým property if and only if \[ E\tilde{\otimes }_l Y \]
has the Radon-Nikodým property. As a corollary, the Radon-Nikodým property in H φ(μ, Y) is described in terms of the Radon-Nikodým property on H φ(μ) and Y.
LA - eng
KW - Bochner norm; l-norm; Banach lattice; Banach space; Martingale; Orlicz space; Orlicz heart; Tensor product; Radon-Nikodým property; -norm; martingale; tensor product
UR - http://eudml.org/doc/268954
ER -
References
top- [1] Birnbaum Z., Orlicz W., Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math., 1931, 3, 1–67
- [2] Bombal F., On l 1 subspaces of Orlicz vector-valued function spaces, Math. Proc. Cambridge Philos. Soc., 1987, 101, 107–112 http://dx.doi.org/10.1017/S0305004100066445 Zbl0634.46019
- [3] Chaney J., Banach lattices of compact maps, Math. Z., 1972, 129(1), 1–19 http://dx.doi.org/10.1007/BF01229536 Zbl0231.46020
- [4] Cullender S.F., Labuschagne C.C.A., A description of norm-convergent martingales on vector-valued L p-spaces, J. Math. Anal. Appl., 2006, 323(1), 119–130 http://dx.doi.org/10.1016/j.jmaa.2005.10.032 Zbl1143.46020
- [5] Cullender S.F., Labuschagne C.C.A., Convergent martingales of operators and the Radon Nikodým property in Banach spaces, Proc. Amer. Math. Soc., 2008, 136(11), 3883–3893 http://dx.doi.org/10.1090/S0002-9939-08-09537-3 Zbl1167.46014
- [6] Dinculeanu N., Integral representation of linear operators. I, II, Stud. Cerc. Mat., 1966, 18, 349–385, 483–536
- [7] Diestel J., An approach to the theory of Orlicz spaces of Lesbesgue-Bochner measurable functions, Math. Ann., 1970, 186(1), 20–33 http://dx.doi.org/10.1007/BF01350637 Zbl0182.45502
- [8] Diestel J., On the representation of bounded, linear operators from Orlicz spaces of Lebesgue-Bochner measurable functions to any Banach space, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 1970, 18, 375–378 Zbl0199.45002
- [9] Diestel J., Some remarks on subspaces of Orlicz spaces of vector-valued finitely additive functions, Studia Math., 1971, 39, 161–164 Zbl0213.39701
- [10] Diestel J., Uhl J.J., Vector Measures, Math. Surveys Monogr., 15, AMS, Providence, 1977
- [11] Edgar G.A., Sucheston L., Stopping Times and Directed Processes, Encyclopedia Math. Appl., 47, Cambridge University Press, Cambridge, 1992 Zbl0779.60032
- [12] Greub W.H., Multilinear Algebra, Grundlehren Math. Wiss., 136, Springer, Berlin-Heidelberg-New York, 1967
- [13] Jeurnink G.A.M., Integration of functions with values in a Banach lattice, Ph.D. thesis, University of Nijmegen, the Netherlands, 1982
- [14] Krasnosel’skii M.A., Rutitskii Ya.B., Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961
- [15] Labuschagne C.C.A., A note on the order continuity of the norm of , Arch. Math., 1994, 62(4), 335–337 http://dx.doi.org/10.1007/BF01201786 Zbl0804.46084
- [16] Labuschagne C.C.A., Riesz reasonable cross norms on tensor products of Banach lattices, Quaest. Math., 2004, 27(3), 243–266 Zbl1079.46010
- [17] Labuschagne C.C.A., Characterizing the one-sided tensor norms Δp and tΔp, Quaest. Math., 2004, 27(4), 339–363 Zbl1079.46009
- [18] Labuschagne C.C.A., A Dodds-Fremlin property for Asplund and Radon-Nikodým operators, Positivity, 2006, 10(2), 391–407 http://dx.doi.org/10.1007/s11117-005-0023-0 Zbl1108.47037
- [19] Lindenstrauss Y., Tzafriri L., Classical Banach Spaces, I and II, Ergeb. Math. Grenzgeb., 92 and 97, Springer, Berlin-Heidelberg-New York, 1977 and 1979 Zbl0362.46013
- [20] Luxemburg W.A.J., Banach function spaces, Ph.D. thesis, Technische Hogeschool te Delft, 1955 Zbl0068.09204
- [21] Meyer-Nieberg P., Banach Lattices, Universitext, Springer, Berlin-Heidelberg-New York, 1991 Zbl0743.46015
- [22] Orlicz W., Über eine gewisse Klasse von Räumen vom Typus B, Bull. Int. Acad. Polon. Sci. A, 1932, 8–9, 207–220
- [23] Popa N., Die Permanenzeigenschaften der Tensorprodukte von Banachverbänden, In: Romanian-Finnish Seminar on Complex Analysis, Bucharest, 1976, Lecture Notes in Math., 743, Springer, Berlin, 1979, 627–647
- [24] Rao M.M., Ren Z.D., Applications of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 250, Marcel Dekker, New York, 2002 Zbl0997.46027
- [25] Schaefer H.H., Banach Lattices and Positive Operators, Grundlehren Math. Wiss., 215, Springer, Berlin-Heidelberg-New York, 1974 Zbl0296.47023
- [26] Sundaresan K., The Radon-Nikodym theorem for Lebesgue-Bochner function spaces, J. Funct. Anal., 1977, 24(3), 276–279 http://dx.doi.org/10.1016/0022-1236(77)90058-1 Zbl0341.46019
- [27] Talagrand M., La structure des espaces de Banach réticulés ayant la propriété de Radon-Nikodym, Israel J. Math., 1983, 44(3), 213–220 http://dx.doi.org/10.1007/BF02760972 Zbl0523.46016
- [28] Talagrand M., Pettis Integral and Measure Theory, Mem. Amer. Math. Soc., 307, AMS, Providence, 1984
- [29] Turett B., Uhl J.J., L p(μ, X) (1 < p < ∞) has the Radon-Nikodým property if X does by martingales, Proc. Amer. Math. Soc., 1976, 61(2), 347–350 Zbl0349.46038
- [30] Uhl J.J., Applications of Radon-Nikodým theorems to martingale convergence, Trans. Amer. Math. Soc., 1969, 145, 271–285 Zbl0211.21903
- [31] Uhl J.J., The Radon-Nikodým theorem and the mean convergence of Banach space valued martingales, Proc. Amer. Math. Soc., 1969, 21(1), 139–144 Zbl0186.20301
- [32] Zaanen A.C., Linear Analysis, Interscience, New York & North-Holland, Amsterdam & Noordhoff, Groningen, 1953 Zbl0053.25601
- [33] Zaanen A.C., Riesz Spaces II, North-Holland Math. Library, 30, North-Holland, Amsterdam-New York-Oxford, 1983
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.