Multipliers and Wiener-Hopf operators on weighted L p spaces
Open Mathematics (2013)
- Volume: 11, Issue: 3, page 561-573
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topVioleta Petkova. "Multipliers and Wiener-Hopf operators on weighted L p spaces." Open Mathematics 11.3 (2013): 561-573. <http://eudml.org/doc/268958>.
@article{VioletaPetkova2013,
abstract = {We study multipliers M (bounded operators commuting with translations) on weighted spaces L ω p (ℝ), and establish the existence of a symbol µM for M, and some spectral results for translations S t and multipliers. We also study operators T on the weighted space L ω p (ℝ+) commuting either with the right translations S t , t ∈ ℝ+, or left translations P +S −t , t ∈ ℝ+, and establish the existence of a symbol µ of T. We characterize completely the spectrum σ(S t ) of the operator S t proving that $\sigma (S_t ) = \lbrace z \in \mathbb \{C\}:|z| \leqslant e^\{t\alpha _0 \} \rbrace ,$ where α 0 is the growth bound of (S t )t≥0. A similar result is obtained for the spectrum of (P +S −t ), t ≥ 0. Moreover, for an operator T commuting with S t , t ≥ 0, we establish the inclusion [...] , where $\mathcal \{O\}$ = z ∈ ℂ: Im z α 0.},
author = {Violeta Petkova},
journal = {Open Mathematics},
keywords = {Mutilpliers; Semi-groups of translations; Spectrum of translation; Weiner-Hopf operators; multipliers; semigroups of translations; spectrum of a translation; Wiener-Hopf operators},
language = {eng},
number = {3},
pages = {561-573},
title = {Multipliers and Wiener-Hopf operators on weighted L p spaces},
url = {http://eudml.org/doc/268958},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Violeta Petkova
TI - Multipliers and Wiener-Hopf operators on weighted L p spaces
JO - Open Mathematics
PY - 2013
VL - 11
IS - 3
SP - 561
EP - 573
AB - We study multipliers M (bounded operators commuting with translations) on weighted spaces L ω p (ℝ), and establish the existence of a symbol µM for M, and some spectral results for translations S t and multipliers. We also study operators T on the weighted space L ω p (ℝ+) commuting either with the right translations S t , t ∈ ℝ+, or left translations P +S −t , t ∈ ℝ+, and establish the existence of a symbol µ of T. We characterize completely the spectrum σ(S t ) of the operator S t proving that $\sigma (S_t ) = \lbrace z \in \mathbb {C}:|z| \leqslant e^{t\alpha _0 } \rbrace ,$ where α 0 is the growth bound of (S t )t≥0. A similar result is obtained for the spectrum of (P +S −t ), t ≥ 0. Moreover, for an operator T commuting with S t , t ≥ 0, we establish the inclusion [...] , where $\mathcal {O}$ = z ∈ ℂ: Im z α 0.
LA - eng
KW - Mutilpliers; Semi-groups of translations; Spectrum of translation; Weiner-Hopf operators; multipliers; semigroups of translations; spectrum of a translation; Wiener-Hopf operators
UR - http://eudml.org/doc/268958
ER -
References
top- [1] Engel K.-J., Nagel R., A Short Course on Operator Semigroups, Universitext, Springer, New York, 2006
- [2] Fašangová E., Miana P.J., Spectral mapping inclusions for the Phillips functional calculus in Banach spaces and algebras, Studia Math., 2005, 167(3), 219–226 http://dx.doi.org/10.4064/sm167-3-3[Crossref] Zbl1080.47017
- [3] Gearhart L., Spectral theory for contraction semigroups on Hilbert space, Trans. Amer. Math. Soc., 1978, 236, 385–394 http://dx.doi.org/10.1090/S0002-9947-1978-0461206-1[Crossref] Zbl0326.47038
- [4] Latushkin Yu., Montgomery-Smith S., Evolutionary semigroups and Lyapunov theorems in Banach spaces, J. Funct. Anal., 1995, 127(1), 173–197 http://dx.doi.org/10.1006/jfan.1995.1007[Crossref]
- [5] Petkova V., Wiener-Hopf operators on L ω2(ℝ+), Arch. Math. (Basel), 2005, 84(4), 311–324 http://dx.doi.org/10.1007/s00013-004-1167-z[Crossref]
- [6] Petkova V., Multipliers on Banach spaces of functions on a locally compact abelian group, J. Lond. Math. Soc., 2007, 75(2), 369–390 http://dx.doi.org/10.1112/jlms/jdm002[Crossref] Zbl1138.43005
- [7] Petkova V., Multipliers on a Hilbert space of functions on R, Serdica Math. J., 2009, 35(2), 207–216 Zbl1224.42019
- [8] Petkova V., Spectral theorem for multipliers on L ω2(ℝ), Arch. Math. (Basel), 2009, 93(4), 357–368 http://dx.doi.org/10.1007/s00013-009-0043-2[Crossref][WoS] Zbl1217.47010
- [9] Petkova V., Spectra of the translations and Wiener-Hopf operators on L ω2(ℝ+), Proc. Amer. Math. Soc. (in press) [WoS]
- [10] Ridge W.C., Approximate point spectrum of a weighted shift, Trans. Amer. Math. Soc., 1970, 147(2), 349–356 http://dx.doi.org/10.1090/S0002-9947-1970-0254635-5[Crossref] Zbl0192.47803
- [11] Rudin W., Fourier Analysis on Groups, Interscience Tracts in Pure and Applied Mathematics, 12, Interscience, New York-London, 1962
- [12] Weis L., The stability of positive semigroups on L p-spaces, Proc. Amer. Math. Soc., 1995, 123(10), 3089–3094 Zbl0851.47028
- [13] Weis L., A short proof for the stability theorem for positive semigroups on L p(µ), Proc. Amer. Math. Soc., 1998, 126(11), 3253–3256 http://dx.doi.org/10.1090/S0002-9939-98-04612-7[Crossref] Zbl0904.47028
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.