Homological Mirror Symmetry for manifolds of general type

Anton Kapustin; Ludmil Katzarkov; Dmitri Orlov; Mirroslav Yotov

Open Mathematics (2009)

  • Volume: 7, Issue: 4, page 571-605
  • ISSN: 2391-5455

Abstract

top
In this paper we outline the foundations of Homological Mirror Symmetry for manifolds of general type. Both Physics and Categorical prospectives are considered.

How to cite

top

Anton Kapustin, et al. "Homological Mirror Symmetry for manifolds of general type." Open Mathematics 7.4 (2009): 571-605. <http://eudml.org/doc/268959>.

@article{AntonKapustin2009,
abstract = {In this paper we outline the foundations of Homological Mirror Symmetry for manifolds of general type. Both Physics and Categorical prospectives are considered.},
author = {Anton Kapustin, Ludmil Katzarkov, Dmitri Orlov, Mirroslav Yotov},
journal = {Open Mathematics},
keywords = {Homological mirror Symmetry; K theory; Categories; homological mirror symmetry; -theory; categories; derived Fukaya category; D-branes; Calabi-Yau manifolds; elliptic curves},
language = {eng},
number = {4},
pages = {571-605},
title = {Homological Mirror Symmetry for manifolds of general type},
url = {http://eudml.org/doc/268959},
volume = {7},
year = {2009},
}

TY - JOUR
AU - Anton Kapustin
AU - Ludmil Katzarkov
AU - Dmitri Orlov
AU - Mirroslav Yotov
TI - Homological Mirror Symmetry for manifolds of general type
JO - Open Mathematics
PY - 2009
VL - 7
IS - 4
SP - 571
EP - 605
AB - In this paper we outline the foundations of Homological Mirror Symmetry for manifolds of general type. Both Physics and Categorical prospectives are considered.
LA - eng
KW - Homological mirror Symmetry; K theory; Categories; homological mirror symmetry; -theory; categories; derived Fukaya category; D-branes; Calabi-Yau manifolds; elliptic curves
UR - http://eudml.org/doc/268959
ER -

References

top
  1. [1] Abouzaid M., On the Fukaya categories of higher genus surfaces, Adv. Math., 2008, 217(3), 1192–1235 http://dx.doi.org/10.1016/j.aim.2007.08.011[WoS][Crossref] Zbl1155.57029
  2. [2] Auroux D., Katzarkov L., Orlov D., Mirror symmetry for del Pezzo surfaces: vanishing cycles and coherent sheaves, Invent. Math., 2006, 166(3), 537–582 http://dx.doi.org/10.1007/s00222-006-0003-4[Crossref] Zbl1110.14033
  3. [3] Auroux D., Katzarkov L., Orlov D., Mirror symmetry for weighted projective planes and their noncommutative deformations, preprint available at http://arxiv.org/abs/math/0404281 Zbl1175.14030
  4. [4] Bondal A., Kapranov M., Framed triangulated categories, Mat. Sb., 1990, 181(5), 669–683 (in Russian), English translation: Math. USSR-Sb., 1991, 70(1), 93–107 
  5. [5] Bondal A., Orlov D., Semiorthogonal decomposition for algebraic varieties, preprint available at http://arxiv.org/abs/alg-geom/9506012 
  6. [6] Bridgeland T., King A., Reid M., The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc., 2001, 14(3), 535–554 http://dx.doi.org/10.1090/S0894-0347-01-00368-X[Crossref] Zbl0966.14028
  7. [7] Candelas P., de la Ossa X., Green P., Parkes L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B, 1991, 359(1), 21–74 http://dx.doi.org/10.1016/0550-3213(91)90292-6[Crossref] Zbl1098.32506
  8. [8] Cox D., Katz S., Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs, 68, American Mathematical Society, Providence, RI, 1999 Zbl0951.14026
  9. [9] Efimov A., Homological mirror symmetry for curves of higher genus, preprint available at http://arxiv.org/abs/0907.3903 Zbl1242.14039
  10. [10] Fukaya K., Mirror symmetry of abelian varieties and multi-theta functions, J. Algebraic Geom., 2002, 11(3), 393–512 Zbl1002.14014
  11. [11] Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory - anomaly and obstruction, preprint available at http://www.math.kyoto-u.ac.jp/fukaya/fukaya.html Zbl1181.53003
  12. [12] Hori K., Katz S., Klemm A., Pandharipande R., Thomas R., Vafa C., Vakil R., Zaslow E., Mirror symmetry, Volume 1, Clay Mathematics Monographs, American Mathematical Society, Providence, RI, 2003 Zbl1044.14018
  13. [13] Hori K., Vafa C., Mirror symmetry, preprint available at http://arxiv.org/abs/hep-th/0002222 Zbl1044.14018
  14. [14] Kapustin A., Orlov D., Remarks on A-branes, mirror symmetry, and the Fukaya category, J. Geom. Phys., 2003, 48(1), 84–99 http://dx.doi.org/10.1016/S0393-0440(03)00026-3[Crossref] Zbl1029.81058
  15. [15] Kapustin A., Orlov D., Lectures on mirror symmetry, derived categories, and D-branes, Russian Math. Surveys, 2004, 59(5), 907–940 http://dx.doi.org/10.1070/RM2004v059n05ABEH000772[Crossref] Zbl1074.14036
  16. [16] Kawamata Y., D-equivalence and K-equivalence, J. Differential Geom., 2002, 61(1), 147–171 
  17. [17] Kuznetsov A., Derived category of V 12 Fano threefolds, preprint available at http://arxiv.org/abs/math/0310008 
  18. [18] Mukai S., Non-Abelian Brill Noether theory and Fano 3 folds, preprint available at http://arxiv.org/abs/alg-geom/9704015 Zbl0929.14021
  19. [19] Narasimhan M.S., Ramanan S., Moduli of vector bundles on a compact Riemann surface, Ann. of Math. (2), 1969, 89, 14–51 http://dx.doi.org/10.2307/1970807[Crossref] Zbl0186.54902
  20. [20] Orlov D., Equivalences of derived categories and K3 surfaces, J. Math. Sci. (New York), 1997, 84(5), 1361–1381 http://dx.doi.org/10.1007/BF02399195[Crossref] Zbl0938.14019
  21. [21] Orlov D., Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova, 2004, 246, Algebr. Geom. Metody, Svyazi i Prilozh., 240–262, English translation: Proc. Steklov Inst. Math., 2004, 3, 227–248 Zbl1101.81093
  22. [22] Orlov D., Mirror symmetry for higher genus curves, Lectures at University of Miami, January 2008, IAS, March 2008 
  23. [23] Orlov D., Formal completions and idempotent completions of triangulated categories of singularities, preprint available at http://arxiv.org/abs/0901.1859 [WoS] Zbl1216.18012
  24. [24] Polishchuk A., Zaslow E., Categorical mirror symmetry: the elliptic curve, Adv. Theor. Math. Phys. 2, 1998, 2, 443–470 Zbl0947.14017
  25. [25] Seidel P., More about vanishing cycles and mutation, Symplectic geometry and mirror symmetry (Seoul, 2000), 429–465, World Sci. Publ., River Edge, NJ, 2001 Zbl1079.14529
  26. [26] Seidel P., Fukaya categories and deformations, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 351–360, Higher Ed. Press, Beijing, 2002 
  27. [27] Seidel P., Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Mathematics, 2008 [WoS] Zbl1159.53001
  28. [28] Seidel P., Homological mirror symmetry for the quartic surface, preprint available at http://arxiv.org/abs/math/0310414 Zbl1334.53091
  29. [29] Seidel P., Homological mirror symmetry for the genus two curve, preprint available at http://arxiv.org/abs/0812.1171. Zbl1226.14028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.