Homological Mirror Symmetry for manifolds of general type
Anton Kapustin; Ludmil Katzarkov; Dmitri Orlov; Mirroslav Yotov
Open Mathematics (2009)
- Volume: 7, Issue: 4, page 571-605
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAnton Kapustin, et al. "Homological Mirror Symmetry for manifolds of general type." Open Mathematics 7.4 (2009): 571-605. <http://eudml.org/doc/268959>.
@article{AntonKapustin2009,
abstract = {In this paper we outline the foundations of Homological Mirror Symmetry for manifolds of general type. Both Physics and Categorical prospectives are considered.},
author = {Anton Kapustin, Ludmil Katzarkov, Dmitri Orlov, Mirroslav Yotov},
journal = {Open Mathematics},
keywords = {Homological mirror Symmetry; K theory; Categories; homological mirror symmetry; -theory; categories; derived Fukaya category; D-branes; Calabi-Yau manifolds; elliptic curves},
language = {eng},
number = {4},
pages = {571-605},
title = {Homological Mirror Symmetry for manifolds of general type},
url = {http://eudml.org/doc/268959},
volume = {7},
year = {2009},
}
TY - JOUR
AU - Anton Kapustin
AU - Ludmil Katzarkov
AU - Dmitri Orlov
AU - Mirroslav Yotov
TI - Homological Mirror Symmetry for manifolds of general type
JO - Open Mathematics
PY - 2009
VL - 7
IS - 4
SP - 571
EP - 605
AB - In this paper we outline the foundations of Homological Mirror Symmetry for manifolds of general type. Both Physics and Categorical prospectives are considered.
LA - eng
KW - Homological mirror Symmetry; K theory; Categories; homological mirror symmetry; -theory; categories; derived Fukaya category; D-branes; Calabi-Yau manifolds; elliptic curves
UR - http://eudml.org/doc/268959
ER -
References
top- [1] Abouzaid M., On the Fukaya categories of higher genus surfaces, Adv. Math., 2008, 217(3), 1192–1235 http://dx.doi.org/10.1016/j.aim.2007.08.011[WoS][Crossref] Zbl1155.57029
- [2] Auroux D., Katzarkov L., Orlov D., Mirror symmetry for del Pezzo surfaces: vanishing cycles and coherent sheaves, Invent. Math., 2006, 166(3), 537–582 http://dx.doi.org/10.1007/s00222-006-0003-4[Crossref] Zbl1110.14033
- [3] Auroux D., Katzarkov L., Orlov D., Mirror symmetry for weighted projective planes and their noncommutative deformations, preprint available at http://arxiv.org/abs/math/0404281 Zbl1175.14030
- [4] Bondal A., Kapranov M., Framed triangulated categories, Mat. Sb., 1990, 181(5), 669–683 (in Russian), English translation: Math. USSR-Sb., 1991, 70(1), 93–107
- [5] Bondal A., Orlov D., Semiorthogonal decomposition for algebraic varieties, preprint available at http://arxiv.org/abs/alg-geom/9506012
- [6] Bridgeland T., King A., Reid M., The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc., 2001, 14(3), 535–554 http://dx.doi.org/10.1090/S0894-0347-01-00368-X[Crossref] Zbl0966.14028
- [7] Candelas P., de la Ossa X., Green P., Parkes L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B, 1991, 359(1), 21–74 http://dx.doi.org/10.1016/0550-3213(91)90292-6[Crossref] Zbl1098.32506
- [8] Cox D., Katz S., Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs, 68, American Mathematical Society, Providence, RI, 1999 Zbl0951.14026
- [9] Efimov A., Homological mirror symmetry for curves of higher genus, preprint available at http://arxiv.org/abs/0907.3903 Zbl1242.14039
- [10] Fukaya K., Mirror symmetry of abelian varieties and multi-theta functions, J. Algebraic Geom., 2002, 11(3), 393–512 Zbl1002.14014
- [11] Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory - anomaly and obstruction, preprint available at http://www.math.kyoto-u.ac.jp/fukaya/fukaya.html Zbl1181.53003
- [12] Hori K., Katz S., Klemm A., Pandharipande R., Thomas R., Vafa C., Vakil R., Zaslow E., Mirror symmetry, Volume 1, Clay Mathematics Monographs, American Mathematical Society, Providence, RI, 2003 Zbl1044.14018
- [13] Hori K., Vafa C., Mirror symmetry, preprint available at http://arxiv.org/abs/hep-th/0002222 Zbl1044.14018
- [14] Kapustin A., Orlov D., Remarks on A-branes, mirror symmetry, and the Fukaya category, J. Geom. Phys., 2003, 48(1), 84–99 http://dx.doi.org/10.1016/S0393-0440(03)00026-3[Crossref] Zbl1029.81058
- [15] Kapustin A., Orlov D., Lectures on mirror symmetry, derived categories, and D-branes, Russian Math. Surveys, 2004, 59(5), 907–940 http://dx.doi.org/10.1070/RM2004v059n05ABEH000772[Crossref] Zbl1074.14036
- [16] Kawamata Y., D-equivalence and K-equivalence, J. Differential Geom., 2002, 61(1), 147–171
- [17] Kuznetsov A., Derived category of V 12 Fano threefolds, preprint available at http://arxiv.org/abs/math/0310008
- [18] Mukai S., Non-Abelian Brill Noether theory and Fano 3 folds, preprint available at http://arxiv.org/abs/alg-geom/9704015 Zbl0929.14021
- [19] Narasimhan M.S., Ramanan S., Moduli of vector bundles on a compact Riemann surface, Ann. of Math. (2), 1969, 89, 14–51 http://dx.doi.org/10.2307/1970807[Crossref] Zbl0186.54902
- [20] Orlov D., Equivalences of derived categories and K3 surfaces, J. Math. Sci. (New York), 1997, 84(5), 1361–1381 http://dx.doi.org/10.1007/BF02399195[Crossref] Zbl0938.14019
- [21] Orlov D., Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova, 2004, 246, Algebr. Geom. Metody, Svyazi i Prilozh., 240–262, English translation: Proc. Steklov Inst. Math., 2004, 3, 227–248 Zbl1101.81093
- [22] Orlov D., Mirror symmetry for higher genus curves, Lectures at University of Miami, January 2008, IAS, March 2008
- [23] Orlov D., Formal completions and idempotent completions of triangulated categories of singularities, preprint available at http://arxiv.org/abs/0901.1859 [WoS] Zbl1216.18012
- [24] Polishchuk A., Zaslow E., Categorical mirror symmetry: the elliptic curve, Adv. Theor. Math. Phys. 2, 1998, 2, 443–470 Zbl0947.14017
- [25] Seidel P., More about vanishing cycles and mutation, Symplectic geometry and mirror symmetry (Seoul, 2000), 429–465, World Sci. Publ., River Edge, NJ, 2001 Zbl1079.14529
- [26] Seidel P., Fukaya categories and deformations, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 351–360, Higher Ed. Press, Beijing, 2002
- [27] Seidel P., Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Mathematics, 2008 [WoS] Zbl1159.53001
- [28] Seidel P., Homological mirror symmetry for the quartic surface, preprint available at http://arxiv.org/abs/math/0310414 Zbl1334.53091
- [29] Seidel P., Homological mirror symmetry for the genus two curve, preprint available at http://arxiv.org/abs/0812.1171. Zbl1226.14028
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.