New Orlicz variants of Hardy type inequalities with power, power-logarithmic, and power-exponential weights

Agnieszka Kałamajska; Katarzyna Pietruska-Pałuba

Open Mathematics (2012)

  • Volume: 10, Issue: 6, page 2033-2050
  • ISSN: 2391-5455

Abstract

top
We obtain Hardy type inequalities 0 M ω r u r ρ r d r C 1 0 M u r ρ r d r + C 2 0 M u ' r ρ r d r , and their Orlicz-norm counterparts ω u L M ( + , ρ ) C ˜ 1 u L M ( + , ρ ) + C ˜ 2 u ' L M ( + , ρ ) , with an N-function M, power, power-logarithmic and power-exponential weights ω, ρ, holding on suitable dilation invariant supersets of C 0∞(ℝ+). Maximal sets of admissible functions u are described. This paper is based on authors’ earlier abstract results and applies them to particular classes of weights.

How to cite

top

Agnieszka Kałamajska, and Katarzyna Pietruska-Pałuba. "New Orlicz variants of Hardy type inequalities with power, power-logarithmic, and power-exponential weights." Open Mathematics 10.6 (2012): 2033-2050. <http://eudml.org/doc/268960>.

@article{AgnieszkaKałamajska2012,
abstract = {We obtain Hardy type inequalities \[\int \_0^\infty \{M\left( \{\omega \left( r \right)\left| \{u\left( r \right)\} \right|\} \right)\rho \left( r \right)dr\} \leqslant C\_1 \int \_0^\infty \{M\left( \{\left| \{u\left( r \right)\} \right|\} \right)\rho \left( r \right)dr + C\_2 \int \_0^\infty \{M\left( \{\left| \{u^\{\prime \}\left( r \right)\} \right|\} \right)\rho \left( r \right)dr,\} \}\] and their Orlicz-norm counterparts \[\left\Vert \{\omega u\} \right\Vert \_\{L^M (\mathbb \{R\}\_ + ,\rho )\} \leqslant \tilde\{C\}\_1 \left\Vert u \right\Vert \_\{L^M (\mathbb \{R\}\_ + ,\rho )\} + \tilde\{C\}\_2 \left\Vert \{u^\{\prime \}\} \right\Vert \_\{L^M (\mathbb \{R\}\_ + ,\rho )\} ,\] with an N-function M, power, power-logarithmic and power-exponential weights ω, ρ, holding on suitable dilation invariant supersets of C 0∞(ℝ+). Maximal sets of admissible functions u are described. This paper is based on authors’ earlier abstract results and applies them to particular classes of weights.},
author = {Agnieszka Kałamajska, Katarzyna Pietruska-Pałuba},
journal = {Open Mathematics},
keywords = {Hardy inequalities; Orlicz-Sobolev spaces; Nondoubling measures; nondoubling measures},
language = {eng},
number = {6},
pages = {2033-2050},
title = {New Orlicz variants of Hardy type inequalities with power, power-logarithmic, and power-exponential weights},
url = {http://eudml.org/doc/268960},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Agnieszka Kałamajska
AU - Katarzyna Pietruska-Pałuba
TI - New Orlicz variants of Hardy type inequalities with power, power-logarithmic, and power-exponential weights
JO - Open Mathematics
PY - 2012
VL - 10
IS - 6
SP - 2033
EP - 2050
AB - We obtain Hardy type inequalities \[\int _0^\infty {M\left( {\omega \left( r \right)\left| {u\left( r \right)} \right|} \right)\rho \left( r \right)dr} \leqslant C_1 \int _0^\infty {M\left( {\left| {u\left( r \right)} \right|} \right)\rho \left( r \right)dr + C_2 \int _0^\infty {M\left( {\left| {u^{\prime }\left( r \right)} \right|} \right)\rho \left( r \right)dr,} }\] and their Orlicz-norm counterparts \[\left\Vert {\omega u} \right\Vert _{L^M (\mathbb {R}_ + ,\rho )} \leqslant \tilde{C}_1 \left\Vert u \right\Vert _{L^M (\mathbb {R}_ + ,\rho )} + \tilde{C}_2 \left\Vert {u^{\prime }} \right\Vert _{L^M (\mathbb {R}_ + ,\rho )} ,\] with an N-function M, power, power-logarithmic and power-exponential weights ω, ρ, holding on suitable dilation invariant supersets of C 0∞(ℝ+). Maximal sets of admissible functions u are described. This paper is based on authors’ earlier abstract results and applies them to particular classes of weights.
LA - eng
KW - Hardy inequalities; Orlicz-Sobolev spaces; Nondoubling measures; nondoubling measures
UR - http://eudml.org/doc/268960
ER -

References

top
  1. [1] Bloom S., Kerman R., Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator, Studia Math., 1994, 110(2), 149–167 Zbl0813.42014
  2. [2] Bobkov S.G., Götze F., Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal., 1999, 163(1), 1–28 http://dx.doi.org/10.1006/jfan.1998.3326[Crossref] 
  3. [3] Brandolini B., Chiacchio F., Trombetti C., Hardy type inequalities and Gaussian measure, Commun. Pure Appl. Anal., 2007, 6(2), 411–428 http://dx.doi.org/10.3934/cpaa.2007.6.411[Crossref] 
  4. [4] Brown R.C., Hinton D.B., Interpolation inequalities with power weights for functions of one variable, J. Math. Anal. Appl., 1993, 172(1), 233–242 http://dx.doi.org/10.1006/jmaa.1993.1020[Crossref] Zbl0779.26012
  5. [5] Brown R.C., Hinton D.B., Weighted interpolation and Hardy inequalities with some spectral-theoretic applications, In: Proceedings of the Fourth International Colloquium on Differential Equations, Plovdiv, August 18–23, 1993, VSP, Utrecht, 1994, 55–70 Zbl0858.26010
  6. [6] Caffarelli L., Kohn R., Nirenberg L., First order interpolation inequalities with weights, Compositio Math., 1984, 53(3), 259–275 Zbl0563.46024
  7. [7] Chua S.-K., On weighted Sobolev interpolation inequalities, Proc. Amer. Math. Soc., 1994, 121(2), 441–449 http://dx.doi.org/10.1090/S0002-9939-1994-1221721-4[Crossref] Zbl0815.26007
  8. [8] Chua S.-K., Sharp conditions for weighted Sobolev interpolation inequalities, Forum Math., 2005, 17(3), 461–478 http://dx.doi.org/10.1515/form.2005.17.3.461[Crossref] 
  9. [9] Cianchi A., Some results in the theory of Orlicz spaces and applications to variational problems, In: Nonlinear Analysis, Function Spaces and Applications, 6, Prague, May 31–June 6, 1998, Academy of Sciences of the Czech Republic, Mathematical Institute, Prague, 1999, 50–92 Zbl0965.46017
  10. [10] Fernández-Martínez P., Signes T., Real interpolation with symmetric spaces and slowly varying functions, Q. J. Math., 2012, 63(1), 133–164 http://dx.doi.org/10.1093/qmath/haq009[Crossref] Zbl1253.46028
  11. [11] Fiorenza A., Krbec M., Indices of Orlicz spaces and some applications, Comment. Math. Univ. Carolin., 1997, 38(3), 433–451 Zbl0937.46023
  12. [12] Gossez J.-P., Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. Soc., 1974, 190, 163–205 http://dx.doi.org/10.1090/S0002-9947-1974-0342854-2[Crossref] Zbl0239.35045
  13. [13] Gustavsson J., Peetre J., Interpolation of Orlicz spaces, Studia Math., 1977, 60(1), 33–59 Zbl0353.46019
  14. [14] Gutiérrez C.E., Wheeden R.L., Sobolev interpolation inequalities with weights, Trans. Amer. Math. Soc., 1991, 323(1), 263–281 Zbl0762.46018
  15. [15] Haroske D., Skrzypczak L., Entropy numbers of embeddings of function spaces with Muckenhoupt weights, III. Some limiting cases, J. Funct. Spaces Appl., 2011, 9(2), 129–178 http://dx.doi.org/10.1155/2011/928962[WoS][Crossref] Zbl1253.46043
  16. [16] Kałamajska A., Pietruska-Pałuba K., On a variant of the Hardy inequality between weighted Orlicz spaces, Studia Math., 2009, 193(1), 1–28 http://dx.doi.org/10.4064/sm193-1-1[Crossref] Zbl1167.26008
  17. [17] Kałamajska A., Pietruska-Pałuba K., On a variant of the Gagliardo-Nirenberg inequality deduced from the Hardy inequality, Bull. Pol. Acad. Sci. Math., 2011, 59(2), 133–149 http://dx.doi.org/10.4064/ba59-2-4[Crossref] Zbl1234.26046
  18. [18] Kałamajska A., Pietruska-Pałuba K., Weighted Hardy-type inequalities in Orlicz spaces, J. Inequal. Appl., 2012, 12(4), 745–766 Zbl1254.26026
  19. [19] Kokilashvili V., Krbec M., Weighted inequalities in Lorentz and Orlicz spaces, World Scientific, River Edge, 1991 Zbl0751.46021
  20. [20] Koskela P., Lehrbäck J., Weighted pointwise Hardy inequalities, J. Lond. Math. Soc., 2009, 79(3), 757–779 http://dx.doi.org/10.1112/jlms/jdp013[Crossref] 
  21. [21] Krasnosel’kii M.A., Rutickii Ya.B., Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961 
  22. [22] Kufner A., Weighted Sobolev Spaces, John Wiley & Sons, New York, 1985 Zbl0601.46039
  23. [23] Kufner A., Maligranda L., Persson L.-E., The Hardy Inequality, Vydavatelský Servis, Plzeň, 2007 Zbl1213.42001
  24. [24] Kufner A., Persson L.-E., Weighted Inequalities of Hardy Type, World Scientific, River Edge, 2003 Zbl1065.26018
  25. [25] Lai Q., Weighted modular inequalities for Hardy type operators, Proc. London Math. Soc., 1999, 79(3), 649–672 http://dx.doi.org/10.1112/S0024611599012010[Crossref] Zbl1030.46030
  26. [26] Mazýa V.G., Sobolev Spaces, Springer Ser. Soviet Math., Springer, Berlin, 1985 
  27. [27] Mitronovic D.S., Pečaric J.E., Fink A.M., Classical and New Inequalities in Analysis, Math. Appl. (East European Ser.), 61, Kluwer, Dordrecht, 1993 
  28. [28] Muckenhoupt B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 1972, 165, 207–226 http://dx.doi.org/10.1090/S0002-9947-1972-0293384-6[Crossref] Zbl0236.26016
  29. [29] Oinarov R., On weighted norm inequalities with three weights, J. London Math. Soc., 1993, 48(1), 103–116 http://dx.doi.org/10.1112/jlms/s2-48.1.103[Crossref] Zbl0811.26008
  30. [30] Oleszkiewicz K., Pietruska-Pałuba K., Orlicz-space Hardy and Landau-Kolmogorov inequalities for Gaussian measures, Demonstratio Math., 2012, 45(2), 227–241 Zbl1267.60020
  31. [31] Opic B., Kufner A., Hardy-Type Inequalities, Pitman Res. Notes Math. Ser., 219, Longman Scientific & Technical, Harlow, 1990 Zbl0698.26007
  32. [32] Pilarczyk D., Asymptotic stability of singular solution to nonlinear heat equation, Discrete Contin. Dyn. Syst., 2009, 25(3), 991–1001 http://dx.doi.org/10.3934/dcds.2009.25.991[Crossref] 
  33. [33] Rao M.M., Ren Z.D., Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math., 146, Marcel Dekker, New York, 1991 Zbl0724.46032
  34. [34] Simonenko I.B., Interpolation and extrapolation of linear operators in Orlicz spaces, Mat. Sb., 1964, 63(105), 536–553 (in Russian) Zbl0116.31602
  35. [35] Vazquez J.L., Zuazua E., The Hardy inequality and the asymptotic behaviour of the heat equation with an inversesquare potential, J. Funct. Anal., 2000, 173(1), 103–153 http://dx.doi.org/10.1006/jfan.1999.3556[Crossref] 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.