A note on absolute weighted mean summability factors
Open Mathematics (2006)
- Volume: 4, Issue: 4, page 594-599
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topHüseyin Bor, and Hikmet Özarslan. "A note on absolute weighted mean summability factors." Open Mathematics 4.4 (2006): 594-599. <http://eudml.org/doc/268967>.
@article{HüseyinBor2006,
abstract = {In this paper we have proved a main theorem concerning the | \[\bar\{N\}\]
, p n; δ |k summability methods, which generalizes a result of Bor and Özarslan [3].},
author = {Hüseyin Bor, Hikmet Özarslan},
journal = {Open Mathematics},
keywords = {40D15; 40F05; 40G99},
language = {eng},
number = {4},
pages = {594-599},
title = {A note on absolute weighted mean summability factors},
url = {http://eudml.org/doc/268967},
volume = {4},
year = {2006},
}
TY - JOUR
AU - Hüseyin Bor
AU - Hikmet Özarslan
TI - A note on absolute weighted mean summability factors
JO - Open Mathematics
PY - 2006
VL - 4
IS - 4
SP - 594
EP - 599
AB - In this paper we have proved a main theorem concerning the | \[\bar{N}\]
, p n; δ |k summability methods, which generalizes a result of Bor and Özarslan [3].
LA - eng
KW - 40D15; 40F05; 40G99
UR - http://eudml.org/doc/268967
ER -
References
top- [1] H. Bor: “On two summability methods”, Math. Proc. Cambridge Philos. Soc., Vol. 97, (1985), pp. 147–149. http://dx.doi.org/10.1017/S030500410006268X Zbl0554.40008
- [2] H. Bor: “On local property of | , p n; δ |k summability of factored Fourier series”, J. Math. Anal. Appl., Vol. 179, (1993), pp. 646–649. http://dx.doi.org/10.1006/jmaa.1993.1375
- [3] H. Bor and H.S. Özarslan: “On the quasi power increasing sequences”, J. Math. Anal. Appl., Vol. 276, (2002), pp. 924–929. http://dx.doi.org/10.1016/S0022-247X(02)00494-8 Zbl1018.40003
- [4] T.M. Flett: “On an extension of absolute summability and some theorems of Little-wood and Paley”, Proc. London Math. Soc., Vol. 7, (1957), pp. 113–141. Zbl0109.04402
- [5] T.M. Flett: “Some more theorems concerning the absolute summability of Fourier series”, Proc. London Math. Soc., Vol. 8, (1958), pp. 357–387. Zbl0109.04502
- [6] G.H. Hardy: Divergent Series, Oxford University Press, Oxford, 1949.
- [7] L. Leindler: “A new application of quasi power increasing sequences”, Publ. Math. Debrecen, Vol. 58, (2001), pp. 791–796. Zbl0980.40004
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.