Duality triads of higher rank: Further properties and some examples
Open Mathematics (2006)
- Volume: 4, Issue: 3, page 507-524
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMatthias Schork. "Duality triads of higher rank: Further properties and some examples." Open Mathematics 4.3 (2006): 507-524. <http://eudml.org/doc/268968>.
@article{MatthiasSchork2006,
abstract = {It is shown that duality triads of higher rank are closely related to orthogonal matrix polynomials on the real line. Furthermore, some examples of duality triads of higher rank are discussed. In particular, it is shown that the generalized Stirling numbers of rank r give rise to a duality triad of rank r.},
author = {Matthias Schork},
journal = {Open Mathematics},
keywords = {05Axx; 11B37; 11B83},
language = {eng},
number = {3},
pages = {507-524},
title = {Duality triads of higher rank: Further properties and some examples},
url = {http://eudml.org/doc/268968},
volume = {4},
year = {2006},
}
TY - JOUR
AU - Matthias Schork
TI - Duality triads of higher rank: Further properties and some examples
JO - Open Mathematics
PY - 2006
VL - 4
IS - 3
SP - 507
EP - 524
AB - It is shown that duality triads of higher rank are closely related to orthogonal matrix polynomials on the real line. Furthermore, some examples of duality triads of higher rank are discussed. In particular, it is shown that the generalized Stirling numbers of rank r give rise to a duality triad of rank r.
LA - eng
KW - 05Axx; 11B37; 11B83
UR - http://eudml.org/doc/268968
ER -
References
top- [1] G.E. Andrews: The Theory of Partitions, Addison Wesley, Reading, 1976.
- [2] P. Blasiak, K.A. Penson and A.I. Solomon: “The Boson Normal Ordering Problem and Generalized Bell Numbers”, Ann. Comb., Vol. 7, (2003), pp. 127–139. http://dx.doi.org/10.1007/s00026-003-0177-z Zbl1030.81004
- [3] P. Blasiak, K.A. Penson and A.I. Solomon: “The general boson normal ordering problem”, Phys. Lett. A, Vol. 309, (2003), pp. 198–205. http://dx.doi.org/10.1016/S0375-9601(03)00194-4 Zbl1009.81026
- [4] E. Borak: “A note on special duality triads and their operator valued counterparts”, Preprint arXiv:math.CO/0411041. Zbl1188.05026
- [5] T.S. Chihara: An Introduction to Orthogonal Polynomials, Gordon & Breach, New York, 1978.
- [6] L. Comtet: Advanced Combinatorics, Reidel, Dordrecht, 1974.
- [7] A.J. Duran and W. Van Assche: “Orthogonal matrix polynomials and higher order recurrence relations”, Linear Algebra Appl., Vol. 219, (1995), pp. 261–280. http://dx.doi.org/10.1016/0024-3795(93)00218-O Zbl0827.15027
- [8] P. Feinsilver and R. Schott: Algebraic structures and operator calculus. Vol. II: Special functions and computer science, Kluwer Academic Publishers, Dordrecht, 1994. Zbl1128.33300
- [9] I. Jaroszewski and A.K. Kwaśniewski: “On the principal recurrence of data structures organization and orthogonal polynomials”, Integral Transforms Spec. Funct., Vol. 11, (2001), pp. 1–12. Zbl0982.68049
- [10] A.K. Kwaśniewski: “On duality triads”, Bull. Soc. Sci. Lettres Łódź, Vol. A 53, Ser. Rech. Déform. 42 (2003), pp. 11–25. Zbl1152.11306
- [11] A.K. Kwaśniewski: “On Fibonomial and other triangles versus duality triads”, Bull. Soc. Sci. Lettres Łódź, Vol. A 53, Ser. Rech. Déform. 42, (2003), pp. 27–37. Zbl1152.11307
- [12] A.K. Kwaśniewski: “Fibonomial Cumulative Connection Constants”, Bulletin of the ICA, Vol. 44, (2005), pp. 81–92. Zbl1075.11010
- [13] A.K. Kwaśniewski: “On umbral extensions of Stirling numbers and Dobinski-like formulas”, Adv. Stud. Contemp. Math., Vol. 12, (2006), pp. 73–100. Zbl1086.05015
- [14] F. Marcellán and A. Ronveaux: “On a class of polynomials orthogonal with respect to a discrete Sobolev inner product”, Indag. Math., Vol. 1, (1990), pp. 451–464. http://dx.doi.org/10.1016/0019-3577(90)90013-D Zbl0732.42016
- [15] F. Marcellán and G. Sansigre: “On a Class of Matrix Orthogonal Polynomials on the Real Line”, Linear Algebra Appl., Vol. 181, (1993), pp. 97–109. http://dx.doi.org/10.1016/0024-3795(93)90026-K Zbl0769.15010
- [16] J. Riordan: Combinatorial Identities, Wiley, New York, 1968.
- [17] M. Schork: “On the combinatorics of normal-ordering bosonic operators and deformations of it”, J. Phys. A: Math. Gen., Vol. 36, (2003), pp. 4651–4665. http://dx.doi.org/10.1088/0305-4470/36/16/314
- [18] M. Schork: “Some remarks on duality triads”, Adv. Stud. Contemp. Math., Vol. 12, (2006), pp. 101–110. Zbl1102.11010
- [19] M. Schork: “On a generalization of duality triads”, Cent. Eur. J. Math., Vol. 4(2), (2006), pp. 304–318. http://dx.doi.org/10.2478/s11533-006-0008-7 Zbl1099.05008
- [20] A. Sinap and W. Van Assche: “Orthogonal matrix polynomials and applications”, J. Comput. Appl. Math., Vol. 66, (1996), pp. 27–52. http://dx.doi.org/10.1016/0377-0427(95)00193-X Zbl0863.42018
- [21] R.P. Stanley: Enumerative Combinatorics, Vol. 2, Cambridge University Press, Cambridge, 1999. Zbl0928.05001
- [22] G. Szegö: Orthogonal Polynomials, American Mathematical Society, 1948.
- [23] V. Totik: “Orthogonal Polynomials”, Surv. Approximation Theory, Vol. 1, (2005), pp. 70–125. Zbl1105.42017
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.