Duality triads of higher rank: Further properties and some examples

Matthias Schork

Open Mathematics (2006)

  • Volume: 4, Issue: 3, page 507-524
  • ISSN: 2391-5455

Abstract

top
It is shown that duality triads of higher rank are closely related to orthogonal matrix polynomials on the real line. Furthermore, some examples of duality triads of higher rank are discussed. In particular, it is shown that the generalized Stirling numbers of rank r give rise to a duality triad of rank r.

How to cite

top

Matthias Schork. "Duality triads of higher rank: Further properties and some examples." Open Mathematics 4.3 (2006): 507-524. <http://eudml.org/doc/268968>.

@article{MatthiasSchork2006,
abstract = {It is shown that duality triads of higher rank are closely related to orthogonal matrix polynomials on the real line. Furthermore, some examples of duality triads of higher rank are discussed. In particular, it is shown that the generalized Stirling numbers of rank r give rise to a duality triad of rank r.},
author = {Matthias Schork},
journal = {Open Mathematics},
keywords = {05Axx; 11B37; 11B83},
language = {eng},
number = {3},
pages = {507-524},
title = {Duality triads of higher rank: Further properties and some examples},
url = {http://eudml.org/doc/268968},
volume = {4},
year = {2006},
}

TY - JOUR
AU - Matthias Schork
TI - Duality triads of higher rank: Further properties and some examples
JO - Open Mathematics
PY - 2006
VL - 4
IS - 3
SP - 507
EP - 524
AB - It is shown that duality triads of higher rank are closely related to orthogonal matrix polynomials on the real line. Furthermore, some examples of duality triads of higher rank are discussed. In particular, it is shown that the generalized Stirling numbers of rank r give rise to a duality triad of rank r.
LA - eng
KW - 05Axx; 11B37; 11B83
UR - http://eudml.org/doc/268968
ER -

References

top
  1. [1] G.E. Andrews: The Theory of Partitions, Addison Wesley, Reading, 1976. 
  2. [2] P. Blasiak, K.A. Penson and A.I. Solomon: “The Boson Normal Ordering Problem and Generalized Bell Numbers”, Ann. Comb., Vol. 7, (2003), pp. 127–139. http://dx.doi.org/10.1007/s00026-003-0177-z Zbl1030.81004
  3. [3] P. Blasiak, K.A. Penson and A.I. Solomon: “The general boson normal ordering problem”, Phys. Lett. A, Vol. 309, (2003), pp. 198–205. http://dx.doi.org/10.1016/S0375-9601(03)00194-4 Zbl1009.81026
  4. [4] E. Borak: “A note on special duality triads and their operator valued counterparts”, Preprint arXiv:math.CO/0411041. Zbl1188.05026
  5. [5] T.S. Chihara: An Introduction to Orthogonal Polynomials, Gordon & Breach, New York, 1978. 
  6. [6] L. Comtet: Advanced Combinatorics, Reidel, Dordrecht, 1974. 
  7. [7] A.J. Duran and W. Van Assche: “Orthogonal matrix polynomials and higher order recurrence relations”, Linear Algebra Appl., Vol. 219, (1995), pp. 261–280. http://dx.doi.org/10.1016/0024-3795(93)00218-O Zbl0827.15027
  8. [8] P. Feinsilver and R. Schott: Algebraic structures and operator calculus. Vol. II: Special functions and computer science, Kluwer Academic Publishers, Dordrecht, 1994. Zbl1128.33300
  9. [9] I. Jaroszewski and A.K. Kwaśniewski: “On the principal recurrence of data structures organization and orthogonal polynomials”, Integral Transforms Spec. Funct., Vol. 11, (2001), pp. 1–12. Zbl0982.68049
  10. [10] A.K. Kwaśniewski: “On duality triads”, Bull. Soc. Sci. Lettres Łódź, Vol. A 53, Ser. Rech. Déform. 42 (2003), pp. 11–25. Zbl1152.11306
  11. [11] A.K. Kwaśniewski: “On Fibonomial and other triangles versus duality triads”, Bull. Soc. Sci. Lettres Łódź, Vol. A 53, Ser. Rech. Déform. 42, (2003), pp. 27–37. Zbl1152.11307
  12. [12] A.K. Kwaśniewski: “Fibonomial Cumulative Connection Constants”, Bulletin of the ICA, Vol. 44, (2005), pp. 81–92. Zbl1075.11010
  13. [13] A.K. Kwaśniewski: “On umbral extensions of Stirling numbers and Dobinski-like formulas”, Adv. Stud. Contemp. Math., Vol. 12, (2006), pp. 73–100. Zbl1086.05015
  14. [14] F. Marcellán and A. Ronveaux: “On a class of polynomials orthogonal with respect to a discrete Sobolev inner product”, Indag. Math., Vol. 1, (1990), pp. 451–464. http://dx.doi.org/10.1016/0019-3577(90)90013-D Zbl0732.42016
  15. [15] F. Marcellán and G. Sansigre: “On a Class of Matrix Orthogonal Polynomials on the Real Line”, Linear Algebra Appl., Vol. 181, (1993), pp. 97–109. http://dx.doi.org/10.1016/0024-3795(93)90026-K Zbl0769.15010
  16. [16] J. Riordan: Combinatorial Identities, Wiley, New York, 1968. 
  17. [17] M. Schork: “On the combinatorics of normal-ordering bosonic operators and deformations of it”, J. Phys. A: Math. Gen., Vol. 36, (2003), pp. 4651–4665. http://dx.doi.org/10.1088/0305-4470/36/16/314 
  18. [18] M. Schork: “Some remarks on duality triads”, Adv. Stud. Contemp. Math., Vol. 12, (2006), pp. 101–110. Zbl1102.11010
  19. [19] M. Schork: “On a generalization of duality triads”, Cent. Eur. J. Math., Vol. 4(2), (2006), pp. 304–318. http://dx.doi.org/10.2478/s11533-006-0008-7 Zbl1099.05008
  20. [20] A. Sinap and W. Van Assche: “Orthogonal matrix polynomials and applications”, J. Comput. Appl. Math., Vol. 66, (1996), pp. 27–52. http://dx.doi.org/10.1016/0377-0427(95)00193-X Zbl0863.42018
  21. [21] R.P. Stanley: Enumerative Combinatorics, Vol. 2, Cambridge University Press, Cambridge, 1999. Zbl0928.05001
  22. [22] G. Szegö: Orthogonal Polynomials, American Mathematical Society, 1948. 
  23. [23] V. Totik: “Orthogonal Polynomials”, Surv. Approximation Theory, Vol. 1, (2005), pp. 70–125. Zbl1105.42017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.