Characterization of α1 and α2-matrices

Rafael Bru; Ljiljana Cvetković; Vladimir Kostić; Francisco Pedroche

Open Mathematics (2010)

  • Volume: 8, Issue: 1, page 32-40
  • ISSN: 2391-5455

Abstract

top
This paper deals with some properties of α1-matrices and α2-matrices which are subclasses of nonsingular H-matrices. In particular, new characterizations of these two subclasses are given, and then used for proving algebraic properties related to subdirect sums and Hadamard products.

How to cite

top

Rafael Bru, et al. "Characterization of α1 and α2-matrices." Open Mathematics 8.1 (2010): 32-40. <http://eudml.org/doc/268975>.

@article{RafaelBru2010,
abstract = {This paper deals with some properties of α1-matrices and α2-matrices which are subclasses of nonsingular H-matrices. In particular, new characterizations of these two subclasses are given, and then used for proving algebraic properties related to subdirect sums and Hadamard products.},
author = {Rafael Bru, Ljiljana Cvetković, Vladimir Kostić, Francisco Pedroche},
journal = {Open Mathematics},
keywords = {H-matrices; α1-matrices; Subdirect sum; Hadamard product; -matrices; -matrices; subdirect sum},
language = {eng},
number = {1},
pages = {32-40},
title = {Characterization of α1 and α2-matrices},
url = {http://eudml.org/doc/268975},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Rafael Bru
AU - Ljiljana Cvetković
AU - Vladimir Kostić
AU - Francisco Pedroche
TI - Characterization of α1 and α2-matrices
JO - Open Mathematics
PY - 2010
VL - 8
IS - 1
SP - 32
EP - 40
AB - This paper deals with some properties of α1-matrices and α2-matrices which are subclasses of nonsingular H-matrices. In particular, new characterizations of these two subclasses are given, and then used for proving algebraic properties related to subdirect sums and Hadamard products.
LA - eng
KW - H-matrices; α1-matrices; Subdirect sum; Hadamard product; -matrices; -matrices; subdirect sum
UR - http://eudml.org/doc/268975
ER -

References

top
  1. [1] Berman A., Plemmons R. J., Nonnegative matrices in the mathematical sciences, Academic Press, New York, Revised reprint of the 1979 original, SIAM, Philadelphia, 1994 Zbl0815.15016
  2. [2] Bru R., Pedroche F., Szyld D.B., Subdirect sums of S-Strictly Diagonally Dominant matrices, Electron. J. Linear Algebra, 2006, 15, 201–209 Zbl1142.15307
  3. [3] Cvetkovic L., H-matrix theory vs. eigenvalue localization, Numerical Algorithms, 2006, 42, 229–245 http://dx.doi.org/10.1007/s11075-006-9029-3 Zbl1107.15012
  4. [4] Cvetkovic L., Kostic V., New criteria for identifying H-matrices, J. Comput. Appl. Math., 2005, 180, 265–278 http://dx.doi.org/10.1016/j.cam.2004.10.017 Zbl1073.65038
  5. [5] Elsner L., Mehrmann V., Convergence of block-iterative methods for linear systems arising in the numerical solution of Euler equations, Numer. Math., 1991, 59, 541–560 http://dx.doi.org/10.1007/BF01385795 Zbl0744.65026
  6. [6] Fallat S.M., Johnson C.R., Sub-direct sums and positivity classes of matrices, Linear Algebra Appl., 1999, 288, 149–173 http://dx.doi.org/10.1016/S0024-3795(98)10194-5 Zbl0973.15013
  7. [7] Gan T.B., Huang T.Z., Simple criteria for nonsingular H-matrices, Linear Algebra Appl., 2003, 374, 317–326 http://dx.doi.org/10.1016/S0024-3795(03)00646-3 Zbl1033.15019
  8. [8] Huang T.Z., Leng S.S., Wachspress E.L., Tang Y.Y., Characterization of H-matrices, Computers & Mathematics with applications, 2004, 48(10–11), 1587–1601 http://dx.doi.org/10.1016/j.camwa.2004.04.034 
  9. [9] Ostrowski A.M., Über die Determinanten mit überwiegender Hauptdiagonale, Comentarii Mathematici Helvetici, 1937, 10, 69–96 (in German) http://dx.doi.org/10.1007/BF01214284 Zbl63.0035.01
  10. [10] Spiteri P., A new characterization of M-matrices and H-matrices, BIT, 2003, 43, 1019–1032 http://dx.doi.org/10.1023/B:BITN.0000014562.10957.a4 Zbl1053.65022
  11. [11] Varga R.S., Geršgorin and his circles, Springer Series in Computational Mathematics, Vol. 36, Springer, Berlin, Heidelberg, 2004 Zbl1057.15023
  12. [12] Zhu Y., Huang T.Z., Subdirect sums of doubly diagonally dominant matrices, Electron. J. Linear Algebra, 2007, 16, 171–182 Zbl1151.15025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.