A family of regular vertex operator algebras with two generators

Dražen Adamović

Open Mathematics (2007)

  • Volume: 5, Issue: 1, page 1-18
  • ISSN: 2391-5455

Abstract

top
For every m ∈ ℂ ∖ 0, −2 and every nonnegative integer k we define the vertex operator (super)algebra D m,k having two generators and rank 3 m m + 2 . If m is a positive integer then D m,k can be realized as a subalgebra of a lattice vertex algebra. In this case, we prove that D m,k is a regular vertex operator (super) algebra and find the number of inequivalent irreducible modules.

How to cite

top

Dražen Adamović. "A family of regular vertex operator algebras with two generators." Open Mathematics 5.1 (2007): 1-18. <http://eudml.org/doc/268977>.

@article{DraženAdamović2007,
abstract = {For every m ∈ ℂ ∖ 0, −2 and every nonnegative integer k we define the vertex operator (super)algebra D m,k having two generators and rank \[\frac\{\{3m\}\}\{\{m + 2\}\}\] . If m is a positive integer then D m,k can be realized as a subalgebra of a lattice vertex algebra. In this case, we prove that D m,k is a regular vertex operator (super) algebra and find the number of inequivalent irreducible modules.},
author = {Dražen Adamović},
journal = {Open Mathematics},
keywords = {Vertex operator algebras; vertex operator superalgebras; rationality; regularity; lattice vertex operator algebras},
language = {eng},
number = {1},
pages = {1-18},
title = {A family of regular vertex operator algebras with two generators},
url = {http://eudml.org/doc/268977},
volume = {5},
year = {2007},
}

TY - JOUR
AU - Dražen Adamović
TI - A family of regular vertex operator algebras with two generators
JO - Open Mathematics
PY - 2007
VL - 5
IS - 1
SP - 1
EP - 18
AB - For every m ∈ ℂ ∖ 0, −2 and every nonnegative integer k we define the vertex operator (super)algebra D m,k having two generators and rank \[\frac{{3m}}{{m + 2}}\] . If m is a positive integer then D m,k can be realized as a subalgebra of a lattice vertex algebra. In this case, we prove that D m,k is a regular vertex operator (super) algebra and find the number of inequivalent irreducible modules.
LA - eng
KW - Vertex operator algebras; vertex operator superalgebras; rationality; regularity; lattice vertex operator algebras
UR - http://eudml.org/doc/268977
ER -

References

top
  1. [1] D. Adamović: “Rationality of Neveu-Schwarz vertex operator superalgebras”, Int. Math. Res. Not., Vol. 17, (1997), pp. 865–874 http://dx.doi.org/10.1155/S107379289700055X Zbl0885.17018
  2. [2] D. Adamović: “Representations of the N = 2 superconformal vertex algebra”, Int. Math. Res. Not., Vol. 2, (1999), pp. 61–79 http://dx.doi.org/10.1155/S1073792899000033 Zbl0920.17013
  3. [3] D. Adamović: “Vertex algebra approach to fusion rules for N = 2 superconformal minimal models”, J. Algebra, Vol. 239, (2001), pp. 549–572 http://dx.doi.org/10.1006/jabr.2000.8728 Zbl1022.17019
  4. [4] D. Adamović: Regularity of certain vertex operator superalgebras, Contemp. Math., Vol. 343, Amer. Math. Soc., Providence, 2004, pp. 1–16. Zbl1058.17017
  5. [5] T. Abe, G. Buhl and C. Dong: “Rationality, regularity and C 2-cofiniteness”, Trans. Amer. Math. Soc., Vol. 356, (2004), pp. 3391–3402. http://dx.doi.org/10.1090/S0002-9947-03-03413-5 Zbl1070.17011
  6. [6] D. Adamović and A. Milas: “Vertex operator algebras associated to the modular invariant representations for A 1(1)”, Math. Res. Lett., Vol. 2, (1995), pp. 563–575 Zbl0848.17033
  7. [7] C. Dong: “Vertex algebras associated with even lattices”, J. Algebra, Vol. 160, (1993), pp. 245–265. http://dx.doi.org/10.1006/jabr.1993.1217 
  8. [8] C. Dong and J. Lepowsky: Generalized vertex algebras and relative vertex operators, Birkhäuser, Boston, 1993. Zbl0803.17009
  9. [9] C. Dong, H. Li and G. Mason: “Regularity of rational vertex operator algebras”, Adv. Math., Vol. 132, (1997), pp. 148–166 http://dx.doi.org/10.1006/aima.1997.1681 
  10. [10] C. Dong, G. Mason and Y. Zhu: “Discrete series of the Virasoro algebra and the Moonshine module”, Proc. Sympos. Math. Amer. Math. Soc., Vol. 56(2), (1994), pp. 295–316 Zbl0813.17019
  11. [11] W. Eholzer and M.R. Gaberdiel: “Unitarity of rational N = 2 superconformal theories”, Comm. Math. Phys., Vol. 186, (1997), pp. 61–85. Zbl0897.17003
  12. [12] I.B. Frenkel, Y.-Z. Huang and J. Lepowsky: “On axiomatic approaches to vertex operator algebras and modules”, Memoris Am. Math. Soc., Vol. 104, 1993. Zbl0789.17022
  13. [13] I. B. Frenkel, J. Lepowsky and A. Meurman: Vertex Operator Algebras and the Monster, Pure Appl. Math., Vol. 134, Academic Press, New York, 1988. Zbl0674.17001
  14. [14] I.B. Frenkel and Y. Zhu: “Vertex operator algebras associated to representations of affine and Virasoro algebras”, Duke Math. J., Vol. 66, (1992), pp. 123–168. http://dx.doi.org/10.1215/S0012-7094-92-06604-X Zbl0848.17032
  15. [15] B.L. Feigin, A.M. Semikhatov and I.Yu. Tipunin: “Equivalence between chain categories of representations of affine sl(2) and N = 2 superconformal algebras”, J. Math. Phys., Vol. 39, (1998), pp. 3865–3905 http://dx.doi.org/10.1063/1.532473 Zbl0935.17011
  16. [16] B.L. Feigin, A.M. Semikhatov and I.Yu. Tipunin: “A semi-infinite construction of unitary N=2 modules”, Theor. Math. Phys., Vol. 126(1), (2001), pp. 1–47. http://dx.doi.org/10.1023/A:1005286813871 
  17. [17] Y.-Z Huang and A. Milas: “Intertwining operator superalgebras and vertex tensor categories for superconformal algebras”, II. Trans. Amer. Math. Soc., Vol. 354, (2002), pp. 363–385. http://dx.doi.org/10.1090/S0002-9947-01-02869-0 Zbl1082.17014
  18. [18] V.G. Kac: Vertex Algebras for Beginners, University Lecture Series, Vol. 10, 2nd ed., AMS, 1998. Zbl0924.17023
  19. [19] Y. Kazama and H. Suzuki: “New N=2 superconformal field theories and superstring compactifications”, Nuclear Phys. B, Vol. 321, (1989), pp. 232–268. http://dx.doi.org/10.1016/0550-3213(89)90250-2 
  20. [20] H. Li: “Local systems of vertex operators, vertex superalgebras and modules”, J. Pure Appl. Algebra, Vol. 109, (1996), pp. 143–195. http://dx.doi.org/10.1016/0022-4049(95)00079-8 
  21. [21] H. Li: “Extension of Vertex Operator Algebras by a Self-Dual Simple Module”, J. Algebra, Vol. 187, (1997), pp. 236–267. http://dx.doi.org/10.1006/jabr.1997.6795 
  22. [22] H. Li: “Certain extensions of vertex operator algebras of affine type”, Comm. Math. Phys., Vol. 217, (2001), pp. 653–696. http://dx.doi.org/10.1007/s002200100386 Zbl0985.17019
  23. [23] H. Li: “Some finiteness properties of regular vertex operator algebras”, J. Algebra, Vol. 212, (1999), pp. 495–514. http://dx.doi.org/10.1006/jabr.1998.7654 
  24. [24] M. Wakimoto: Lectures on infinite-dimensional Lie algebra, algebra, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. 
  25. [25] W. Wang: “Rationality of Virasoro Vertex operator algebras”, Internat. Math. Res. Notices, Vol. 71(1), (1993), PP. 197–211. http://dx.doi.org/10.1155/S1073792893000212 Zbl0791.17029
  26. [26] Xu Xiaoping: Introduction to vertex operator superalgebras and their modules, Mathematics and Its Applications, Vol. 456, Kluwer Academic Publishers, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.