The higher rank numerical range of nonnegative matrices

Aikaterini Aretaki; Ioannis Maroulas

Open Mathematics (2013)

  • Volume: 11, Issue: 3, page 435-446
  • ISSN: 2391-5455

Abstract

top
In this article the rank-k numerical range ∧k (A) of an entrywise nonnegative matrix A is investigated. Extending the notion of elements of maximum modulus in ∧k (A), we examine their location on the complex plane. Further, an application of this theory to ∧k (L(λ)) of a Perron polynomial L(λ) is elaborated via its companion matrix C L.

How to cite

top

Aikaterini Aretaki, and Ioannis Maroulas. "The higher rank numerical range of nonnegative matrices." Open Mathematics 11.3 (2013): 435-446. <http://eudml.org/doc/268979>.

@article{AikateriniAretaki2013,
abstract = {In this article the rank-k numerical range ∧k (A) of an entrywise nonnegative matrix A is investigated. Extending the notion of elements of maximum modulus in ∧k (A), we examine their location on the complex plane. Further, an application of this theory to ∧k (L(λ)) of a Perron polynomial L(λ) is elaborated via its companion matrix C L.},
author = {Aikaterini Aretaki, Ioannis Maroulas},
journal = {Open Mathematics},
keywords = {Perron-Frobenius theory; Nonnegative matrix; Perron polynomial; Higher rank numerical range; Rank-k numerical radius; nonnegative matrix; higher rank numerical range; rank- numerical radius},
language = {eng},
number = {3},
pages = {435-446},
title = {The higher rank numerical range of nonnegative matrices},
url = {http://eudml.org/doc/268979},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Aikaterini Aretaki
AU - Ioannis Maroulas
TI - The higher rank numerical range of nonnegative matrices
JO - Open Mathematics
PY - 2013
VL - 11
IS - 3
SP - 435
EP - 446
AB - In this article the rank-k numerical range ∧k (A) of an entrywise nonnegative matrix A is investigated. Extending the notion of elements of maximum modulus in ∧k (A), we examine their location on the complex plane. Further, an application of this theory to ∧k (L(λ)) of a Perron polynomial L(λ) is elaborated via its companion matrix C L.
LA - eng
KW - Perron-Frobenius theory; Nonnegative matrix; Perron polynomial; Higher rank numerical range; Rank-k numerical radius; nonnegative matrix; higher rank numerical range; rank- numerical radius
UR - http://eudml.org/doc/268979
ER -

References

top
  1. [1] Aretaki Aik., Higher Rank Numerical Ranges of Nonnegative Matrices and Matrix Polynomials, PhD thesis, National Technical University of Athens, 2011 Zbl1326.15029
  2. [2] Aretaki Aik., Maroulas J., The higher rank numerical range of matrix polynomials, preprint available at http://arxiv.org/abs/1104.1328 Zbl1326.15029
  3. [3] Aretaki Aik., Maroulas J., The K-rank numerical radii, Ann. Funct. Anal., 2012, 3(1), 100–108 [Crossref] Zbl1273.47014
  4. [4] Choi M.-D., Kribs D.W., Zyczkowski K., Quantum error correcting codes from the compression formalism, Rep. Math. Phys., 2006, 58(1), 77–91 http://dx.doi.org/10.1016/S0034-4877(06)80041-8[Crossref] Zbl1120.81011
  5. [5] Gau H.-L., Li C.-K., Poon Y.-T., Sze N.-S., Higher rank numerical ranges of normal matrices, SIAM J. Matrix Anal. Appl., 2011, 32(1), 23–43 http://dx.doi.org/10.1137/09076430X[Crossref] 
  6. [6] Horn R.A., Johnson C.R., Matrix Analysis, Cambridge University Press, Cambridge, 1985 Zbl0576.15001
  7. [7] Horn R.A., Johnson C.R., Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991 http://dx.doi.org/10.1017/CBO9780511840371[Crossref] Zbl0729.15001
  8. [8] Issos J.N., The Field of Values of Non-Negative Irreducible Matrices, PhD thesis, Auburn University, 1966 
  9. [9] Li C.-K., Poon Y.-T., Sze N.-S., Condition for the higher rank numerical range to be non-empty, Linear Multilinear Algebra, 2009, 57(4), 365–368 http://dx.doi.org/10.1080/03081080701786384[Crossref][WoS] 
  10. [10] Li C.-K., Sze N.-S., Canonical forms, higher rank numerical ranges, totally isotropic subspaces, and matrix equations, Proc. Amer. Math. Soc., 2008, 136(9), 3013–3023 http://dx.doi.org/10.1090/S0002-9939-08-09536-1[Crossref][WoS] Zbl1152.15027
  11. [11] Li C.-K., Tam B.-S., Wu P.Y., The numerical range of a nonnegative matrix, Linear Algebra Appl., 2002, 350, 1–23 http://dx.doi.org/10.1016/S0024-3795(02)00291-4[Crossref] Zbl1003.15027
  12. [12] Maroulas J., Psarrakos P.J., Tsatsomeros M.J., Perron-Frobenius type results on the numerical range, Linear Algebra Appl., 2002, 348, 49–62 http://dx.doi.org/10.1016/S0024-3795(01)00574-2[Crossref] Zbl1002.15028
  13. [13] Psarrakos P.J., Tsatsomeros M.J., A primer of Perron-Frobenius theory for matrix polynomials, Linear Algebra Appl., 2004, 393, 333–351 http://dx.doi.org/10.1016/j.laa.2003.12.026[Crossref] 
  14. [14] Tam B.-S., Yang S., On matrices whose numerical ranges have circular or weak circular symmetry, Linear Algebra Appl., 1999, 302/303, 193–221 http://dx.doi.org/10.1016/S0024-3795(99)00174-3[Crossref] Zbl0951.15022
  15. [15] Woerdeman H.J., The higher rank numerical range is convex, Linear Multilinear Algebra, 2007, 56(1–2), 65–67 [WoS] Zbl1137.15018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.