A criterion of SNT(X) = {[X]} for hyperformal spaces

Jinsong Ni

Open Mathematics (2009)

  • Volume: 7, Issue: 2, page 224-229
  • ISSN: 2391-5455

Abstract

top
We will give a condition characterizing spaces X with SNT(X) = {[X]} which generalizes the corresponding result of McGibbon and Moller [8] for rational H-spaces.

How to cite

top

Jinsong Ni. "A criterion of SNT(X) = {[X]} for hyperformal spaces." Open Mathematics 7.2 (2009): 224-229. <http://eudml.org/doc/268983>.

@article{JinsongNi2009,
abstract = {We will give a condition characterizing spaces X with SNT(X) = \{[X]\} which generalizes the corresponding result of McGibbon and Moller [8] for rational H-spaces.},
author = {Jinsong Ni},
journal = {Open Mathematics},
keywords = {Formal space; Hyperformal space; Mittag-Leffler tower; Posnikov section; formal space; hyperformal space; Postnikov section; same -type},
language = {eng},
number = {2},
pages = {224-229},
title = {A criterion of SNT(X) = \{[X]\} for hyperformal spaces},
url = {http://eudml.org/doc/268983},
volume = {7},
year = {2009},
}

TY - JOUR
AU - Jinsong Ni
TI - A criterion of SNT(X) = {[X]} for hyperformal spaces
JO - Open Mathematics
PY - 2009
VL - 7
IS - 2
SP - 224
EP - 229
AB - We will give a condition characterizing spaces X with SNT(X) = {[X]} which generalizes the corresponding result of McGibbon and Moller [8] for rational H-spaces.
LA - eng
KW - Formal space; Hyperformal space; Mittag-Leffler tower; Posnikov section; formal space; hyperformal space; Postnikov section; same -type
UR - http://eudml.org/doc/268983
ER -

References

top
  1. [1] Duan H., Zhao X., The classification of cohomology endomorphisms of certain flag manifolds, Pacific J. Math., 2000, 192, 93–102 http://dx.doi.org/10.2140/pjm.2000.192.93[Crossref] Zbl1017.57015
  2. [2] Felix Y., Halperin S., Thomas J.-C., Rational homotopy theory, Graduate Texts in Mathematics 205, Springer-Verlag, New York, 2001 Zbl0961.55002
  3. [3] Glover H.H., Mislin G., On the genus of generalized flag manifolds, Enseign. Math. (2), 1982, 27, 211–219 Zbl0498.55004
  4. [4] Gray B.I., Spaces of the same n-type, for all n, Topology, 1966, 5, 241–243 http://dx.doi.org/10.1016/0040-9383(66)90008-5[Crossref] 
  5. [5] Hilton P., Mislin G., Roitberg J., Homotopical localization, Proc. London Math. Soc. (3), 1973, 26, 693–706 http://dx.doi.org/10.1112/plms/s3-26.4.693[Crossref] Zbl0259.55006
  6. [6] Jinsong N., A-phantom maps and spaces have the same (n,A)-type, PhD thesis, Mathematics Institute, Chinese Academy of Sciences, 1998 
  7. [7] Jinsong N., Natural mapping on groups of selfhomotopic equivalence of hyperformal spaces have finiteness, Journal of Suzhou University (natural science edition), 2005, 21 (in Chinese) 
  8. [8] McGibbon C.A., Møller J.M., On spaces with the same n-type for all n, Topology, 1992, 31, 177–201 http://dx.doi.org/10.1016/0040-9383(92)90069-T[Crossref] Zbl0765.55010
  9. [9] Smith S.B., Rational homotopy of the space of self-maps of complexes with finitely many homotopy groups, Trans. Amer. Math. Soc., 1994, 342, 895–915 http://dx.doi.org/10.2307/2154658[Crossref] Zbl0802.55009
  10. [10] Smith S.B., Postnikov sections of formal and hyperformal spaces, Proc. Amer. Math. Soc., 1994, 122, 893–903 http://dx.doi.org/10.2307/2160769[Crossref] Zbl0826.55006
  11. [11] Wilkerson C., Classification of spaces of the same n-type for all n, Proc. Amer. Math. Soc., 1976, 60, 279–285 http://dx.doi.org/10.2307/2041158[Crossref] 
  12. [12] Wilkerson C., Applications of minimal simplicial groups, Topology, 1976, 15, 111–130 http://dx.doi.org/10.1016/0040-9383(76)90001-X[Crossref] 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.