A criterion of SNT(X) = {[X]} for hyperformal spaces
Open Mathematics (2009)
- Volume: 7, Issue: 2, page 224-229
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topJinsong Ni. "A criterion of SNT(X) = {[X]} for hyperformal spaces." Open Mathematics 7.2 (2009): 224-229. <http://eudml.org/doc/268983>.
@article{JinsongNi2009,
abstract = {We will give a condition characterizing spaces X with SNT(X) = \{[X]\} which generalizes the corresponding result of McGibbon and Moller [8] for rational H-spaces.},
author = {Jinsong Ni},
journal = {Open Mathematics},
keywords = {Formal space; Hyperformal space; Mittag-Leffler tower; Posnikov section; formal space; hyperformal space; Postnikov section; same -type},
language = {eng},
number = {2},
pages = {224-229},
title = {A criterion of SNT(X) = \{[X]\} for hyperformal spaces},
url = {http://eudml.org/doc/268983},
volume = {7},
year = {2009},
}
TY - JOUR
AU - Jinsong Ni
TI - A criterion of SNT(X) = {[X]} for hyperformal spaces
JO - Open Mathematics
PY - 2009
VL - 7
IS - 2
SP - 224
EP - 229
AB - We will give a condition characterizing spaces X with SNT(X) = {[X]} which generalizes the corresponding result of McGibbon and Moller [8] for rational H-spaces.
LA - eng
KW - Formal space; Hyperformal space; Mittag-Leffler tower; Posnikov section; formal space; hyperformal space; Postnikov section; same -type
UR - http://eudml.org/doc/268983
ER -
References
top- [1] Duan H., Zhao X., The classification of cohomology endomorphisms of certain flag manifolds, Pacific J. Math., 2000, 192, 93–102 http://dx.doi.org/10.2140/pjm.2000.192.93[Crossref] Zbl1017.57015
- [2] Felix Y., Halperin S., Thomas J.-C., Rational homotopy theory, Graduate Texts in Mathematics 205, Springer-Verlag, New York, 2001 Zbl0961.55002
- [3] Glover H.H., Mislin G., On the genus of generalized flag manifolds, Enseign. Math. (2), 1982, 27, 211–219 Zbl0498.55004
- [4] Gray B.I., Spaces of the same n-type, for all n, Topology, 1966, 5, 241–243 http://dx.doi.org/10.1016/0040-9383(66)90008-5[Crossref]
- [5] Hilton P., Mislin G., Roitberg J., Homotopical localization, Proc. London Math. Soc. (3), 1973, 26, 693–706 http://dx.doi.org/10.1112/plms/s3-26.4.693[Crossref] Zbl0259.55006
- [6] Jinsong N., A-phantom maps and spaces have the same (n,A)-type, PhD thesis, Mathematics Institute, Chinese Academy of Sciences, 1998
- [7] Jinsong N., Natural mapping on groups of selfhomotopic equivalence of hyperformal spaces have finiteness, Journal of Suzhou University (natural science edition), 2005, 21 (in Chinese)
- [8] McGibbon C.A., Møller J.M., On spaces with the same n-type for all n, Topology, 1992, 31, 177–201 http://dx.doi.org/10.1016/0040-9383(92)90069-T[Crossref] Zbl0765.55010
- [9] Smith S.B., Rational homotopy of the space of self-maps of complexes with finitely many homotopy groups, Trans. Amer. Math. Soc., 1994, 342, 895–915 http://dx.doi.org/10.2307/2154658[Crossref] Zbl0802.55009
- [10] Smith S.B., Postnikov sections of formal and hyperformal spaces, Proc. Amer. Math. Soc., 1994, 122, 893–903 http://dx.doi.org/10.2307/2160769[Crossref] Zbl0826.55006
- [11] Wilkerson C., Classification of spaces of the same n-type for all n, Proc. Amer. Math. Soc., 1976, 60, 279–285 http://dx.doi.org/10.2307/2041158[Crossref]
- [12] Wilkerson C., Applications of minimal simplicial groups, Topology, 1976, 15, 111–130 http://dx.doi.org/10.1016/0040-9383(76)90001-X[Crossref]
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.