Some new transformations for Bailey pairs and WP-Bailey pairs
Open Mathematics (2010)
- Volume: 8, Issue: 3, page 474-487
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topJames Mc Laughlin. "Some new transformations for Bailey pairs and WP-Bailey pairs." Open Mathematics 8.3 (2010): 474-487. <http://eudml.org/doc/268987>.
@article{JamesMcLaughlin2010,
abstract = {We derive several new transformations relating WP-Bailey pairs. We also consider the corresponding transformations relating standard Bailey pairs, and as a consequence, derive some quite general expansions for products of theta functions which can also be expressed as certain types of Lambert series.},
author = {James Mc Laughlin},
journal = {Open Mathematics},
keywords = {Bailey pairs; WP-Bailey Chains; WP-Bailey pairs; Lambert Series; Basic Hypergeometric Series; q-series; Theta series; WP-Bailey chains; Lambert series; basic hypergeometric series; theta series},
language = {eng},
number = {3},
pages = {474-487},
title = {Some new transformations for Bailey pairs and WP-Bailey pairs},
url = {http://eudml.org/doc/268987},
volume = {8},
year = {2010},
}
TY - JOUR
AU - James Mc Laughlin
TI - Some new transformations for Bailey pairs and WP-Bailey pairs
JO - Open Mathematics
PY - 2010
VL - 8
IS - 3
SP - 474
EP - 487
AB - We derive several new transformations relating WP-Bailey pairs. We also consider the corresponding transformations relating standard Bailey pairs, and as a consequence, derive some quite general expansions for products of theta functions which can also be expressed as certain types of Lambert series.
LA - eng
KW - Bailey pairs; WP-Bailey Chains; WP-Bailey pairs; Lambert Series; Basic Hypergeometric Series; q-series; Theta series; WP-Bailey chains; Lambert series; basic hypergeometric series; theta series
UR - http://eudml.org/doc/268987
ER -
References
top- [1] Andrews G.E., Bailey’s transform, lemma, chains and tree, Special functions 2000: current perspective and future directions (Tempe, AZ), 1–22, NATO Sci. Ser. II Math. Phys. Chem., 30, Kluwer Acad. Publ., Dordrecht, 2001 Zbl1005.33005
- [2] Andrews G.E., Berkovich A, The WP-Bailey tree and its implications, J. London Math. Soc.(2), 2002, 66(3), 529–549 http://dx.doi.org/10.1112/S0024610702003617 Zbl1049.33010
- [3] Andrews G.E., Berndt B.C., Ramanujans Lost Notebook, Part I, Springer, 2005 Zbl1075.11001
- [4] Andrews G.E., Lewis R., Liu Z.G., An identity relating a theta function to a sum of Lambert series, Bull. London Math. Soc., 2001, 33(1), 25–31 http://dx.doi.org/10.1112/blms/33.1.25 Zbl1021.11010
- [5] Berndt B.C., Ramanujans Notebooks, Part III, Springer-Verlag, New York, 1991 Zbl0733.11001
- [6] Berndt B.C., Ramanujans Notebooks, Part V, Springer-Verlag, New York, 1998
- [7] Borwein J.M., Borwein P.B., A cubic counterpart of Jacobi’s identity and the AGM, Trans. Amer. Math. Soc, 1991, 323(2), 691–701 http://dx.doi.org/10.2307/2001551 Zbl0725.33014
- [8] Bressoud D., Some identities for terminating q-series, Math. Proc. Cambridge Philos. Soc, 1981, 89(2), 211–223 http://dx.doi.org/10.1017/S0305004100058114 Zbl0454.33003
- [9] Gasper G., Rahman M., Basic hypergeometric series, With a foreword by Richard Askey, Encyclopedia of Mathematics and its Applications, 96, Cambridge University Press, Cambridge, 2004 Zbl1129.33005
- [10] Liu Q., Ma X., On the Characteristic Equation of Well-Poised Baily Chains, Ramanujan J., 2009, 18(3), 351–370 http://dx.doi.org/10.1007/s11139-007-9060-6 Zbl1172.05009
- [11] Mc Laughlin J., Sills A.V., Zimmer P., Some implications of Chu’s 10Ψ10 extension of Bailey’s 6Ψ6 summation formula, preprint
- [12] Mc Laughlin J., Zimmer P., General WP-Bailey Chains, Ramanujan J., 2010, 22(1), 11–31 http://dx.doi.org/10.1007/s11139-010-9220-y
- [13] Mc Laughlin J., Zimmer P., Some Implications of the WP-Bailey Tree, Adv. in Appl. Math., 2009, 43(2), 162–175 http://dx.doi.org/10.1016/j.aam.2009.02.001 Zbl1173.33015
- [14] Singh U.B., A note on a transformation of Bailey, Quart. J. Math. Oxford Ser. (2), 1994, 45(177), 111–116 http://dx.doi.org/10.1093/qmath/45.1.111
- [15] Slater L.J., A new proof of Rogers’s transformations of infinite series, Proc. London Math. Soc. (2), 1951, 53, 460–475 http://dx.doi.org/10.1112/plms/s2-53.6.460 Zbl0044.06102
- [16] Spiridonov V.P., An elliptic incarnation of the Bailey chain, Int. Math. Res. Not., 2002, 37, 1945–1977 http://dx.doi.org/10.1155/S1073792802205127 Zbl1185.33023
- [17] Watson G.N., The Final Problem: An Account of the Mock Theta Functions, J. London Math. Soc., 1936, 11, 55–80 http://dx.doi.org/10.1112/jlms/s1-11.1.55 Zbl0013.11502
- [18] Warnaar S.O, Extensions of the well-poised and elliptic well-poised Bailey lemma, Indag. Math. (N.S.), 2003, 14, 571–588 http://dx.doi.org/10.1016/S0019-3577(03)90061-9 Zbl1054.33013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.