Ordinal ultrafilters versus P-hierarchy
Open Mathematics (2014)
- Volume: 12, Issue: 1, page 84-96
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAndrzej Starosolski. "Ordinal ultrafilters versus P-hierarchy." Open Mathematics 12.1 (2014): 84-96. <http://eudml.org/doc/268990>.
@article{AndrzejStarosolski2014,
abstract = {An earlier paper [Starosolski A., P-hierarchy on βω, J. Symbolic Logic, 2008, 73(4), 1202–1214] investigated the relations between ordinal ultrafilters and the so-called P-hierarchy. The present paper focuses on the aspects of characterization of classes of ultrafilters of finite index, existence, generic existence and the Rudin-Keisler-order.},
author = {Andrzej Starosolski},
journal = {Open Mathematics},
keywords = {P-hierarchy; Ordinal ultrafilters; P-points; Monotone sequential contour; (Relatively) RK-minimal points; ordinal ultrafilters; monotone sequential contour; (relatively) RK-minimal points},
language = {eng},
number = {1},
pages = {84-96},
title = {Ordinal ultrafilters versus P-hierarchy},
url = {http://eudml.org/doc/268990},
volume = {12},
year = {2014},
}
TY - JOUR
AU - Andrzej Starosolski
TI - Ordinal ultrafilters versus P-hierarchy
JO - Open Mathematics
PY - 2014
VL - 12
IS - 1
SP - 84
EP - 96
AB - An earlier paper [Starosolski A., P-hierarchy on βω, J. Symbolic Logic, 2008, 73(4), 1202–1214] investigated the relations between ordinal ultrafilters and the so-called P-hierarchy. The present paper focuses on the aspects of characterization of classes of ultrafilters of finite index, existence, generic existence and the Rudin-Keisler-order.
LA - eng
KW - P-hierarchy; Ordinal ultrafilters; P-points; Monotone sequential contour; (Relatively) RK-minimal points; ordinal ultrafilters; monotone sequential contour; (relatively) RK-minimal points
UR - http://eudml.org/doc/268990
ER -
References
top- [1] Baumgartner J.E., Ultrafilters on ω, J. Symbolic Logic, 1995, 60(2), 624–639 http://dx.doi.org/10.2307/2275854 Zbl0834.04005
- [2] Brendle J., Between P-points and nowhere dense ultrafilters, Israel J. Math., 1999, 113, 205–230 http://dx.doi.org/10.1007/BF02780177 Zbl0938.03069
- [3] Comfort W.W., Negrepontis S., The Theory of Ultrafilters, Grundlehren Math. Wiss., 211, Springer, Heidelberg-New York, 1974 Zbl0298.02004
- [4] Daguenet M., Emploi des filtres sur N dans l’étude descriptive des fonctions, Fund. Math., 1977, 95(1), 11–33 Zbl0362.04006
- [5] Dolecki S., Multisequences, Quaest. Math., 2006, 29(2), 239–277 http://dx.doi.org/10.2989/16073600609486162
- [6] Dolecki S., Mynard F., Cascades and multifilters, In: Hyperspace Topologies and Applications, La Bussière, October 5–10, 1997, Topology Appl., 2002, 104(1–3), 53–65 Zbl0953.54003
- [7] Dolecki S., Starosolski A., Watson S., Extension of multisequences and countably uniradial classes of topologies, Comment. Math. Univ. Carolin., 2003, 44(1), 165–181 Zbl1099.54024
- [8] Frolík Z., Sums of ultrafilters, Bull. Amer. Math. Soc., 1967, 73(1), 87–91 http://dx.doi.org/10.1090/S0002-9904-1967-11653-7 Zbl0166.18602
- [9] Grimeisen G., Gefilterte Summation von Filtern und iterierte Grenzprozesse. I, Math. Annalen, 1960, 141(4), 318–342 http://dx.doi.org/10.1007/BF01360766 Zbl0096.26201
- [10] Grimeisen G., Gefilterte Summation von Filtern und iterierte Grenzprozesse. II, Math. Annalen, 1961, 144(5), 386–417 http://dx.doi.org/10.1007/BF01396535 Zbl0101.14805
- [11] Katětov M., On descriptive classes of functions, In: Theory of Sets and Topology, VEB Deutscher Verlag der Wissenschaften, Berlin, 1972, 265–278
- [12] Katětov M., On descriptive classification of functions, In: General Topology and its Relations to Modern Analysis and Algebra III, Prague, August 30–September 3, 1971, Academia, Prague, 1972, 235–242
- [13] Ketonen J., On the existence of P-points in the Stone-Čech compactification of integers, Fund. Math., 1976, 92(2), 91–94 Zbl0339.54035
- [14] Laflamme C., A few special ordinal ultrafilters, J. Symbolic Logic, 1996, 61(3), 920–927 http://dx.doi.org/10.2307/2275792 Zbl0871.04004
- [15] van Mill J., An introduction to βω, In: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 503–567
- [16] Starosolski A., Fractalness of supercontours, In: Spring Topology and Dynamical Systems Conference, Topology Proc., 2006, 30(1), 389–402 Zbl1131.54020
- [17] Starosolski A., P-hierarchy on βω, J. Symbolic Logic, 2008, 73(4), 1202–1214 http://dx.doi.org/10.2178/jsl/1230396914
- [18] Starosolski A., Cascades, order and ultrafilters, preprint avilable at http://arxiv.org/pdf/1201.2146.pdf
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.