Ordinal ultrafilters versus P-hierarchy

Andrzej Starosolski

Open Mathematics (2014)

  • Volume: 12, Issue: 1, page 84-96
  • ISSN: 2391-5455

Abstract

top
An earlier paper [Starosolski A., P-hierarchy on βω, J. Symbolic Logic, 2008, 73(4), 1202–1214] investigated the relations between ordinal ultrafilters and the so-called P-hierarchy. The present paper focuses on the aspects of characterization of classes of ultrafilters of finite index, existence, generic existence and the Rudin-Keisler-order.

How to cite

top

Andrzej Starosolski. "Ordinal ultrafilters versus P-hierarchy." Open Mathematics 12.1 (2014): 84-96. <http://eudml.org/doc/268990>.

@article{AndrzejStarosolski2014,
abstract = {An earlier paper [Starosolski A., P-hierarchy on βω, J. Symbolic Logic, 2008, 73(4), 1202–1214] investigated the relations between ordinal ultrafilters and the so-called P-hierarchy. The present paper focuses on the aspects of characterization of classes of ultrafilters of finite index, existence, generic existence and the Rudin-Keisler-order.},
author = {Andrzej Starosolski},
journal = {Open Mathematics},
keywords = {P-hierarchy; Ordinal ultrafilters; P-points; Monotone sequential contour; (Relatively) RK-minimal points; ordinal ultrafilters; monotone sequential contour; (relatively) RK-minimal points},
language = {eng},
number = {1},
pages = {84-96},
title = {Ordinal ultrafilters versus P-hierarchy},
url = {http://eudml.org/doc/268990},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Andrzej Starosolski
TI - Ordinal ultrafilters versus P-hierarchy
JO - Open Mathematics
PY - 2014
VL - 12
IS - 1
SP - 84
EP - 96
AB - An earlier paper [Starosolski A., P-hierarchy on βω, J. Symbolic Logic, 2008, 73(4), 1202–1214] investigated the relations between ordinal ultrafilters and the so-called P-hierarchy. The present paper focuses on the aspects of characterization of classes of ultrafilters of finite index, existence, generic existence and the Rudin-Keisler-order.
LA - eng
KW - P-hierarchy; Ordinal ultrafilters; P-points; Monotone sequential contour; (Relatively) RK-minimal points; ordinal ultrafilters; monotone sequential contour; (relatively) RK-minimal points
UR - http://eudml.org/doc/268990
ER -

References

top
  1. [1] Baumgartner J.E., Ultrafilters on ω, J. Symbolic Logic, 1995, 60(2), 624–639 http://dx.doi.org/10.2307/2275854 Zbl0834.04005
  2. [2] Brendle J., Between P-points and nowhere dense ultrafilters, Israel J. Math., 1999, 113, 205–230 http://dx.doi.org/10.1007/BF02780177 Zbl0938.03069
  3. [3] Comfort W.W., Negrepontis S., The Theory of Ultrafilters, Grundlehren Math. Wiss., 211, Springer, Heidelberg-New York, 1974 Zbl0298.02004
  4. [4] Daguenet M., Emploi des filtres sur N dans l’étude descriptive des fonctions, Fund. Math., 1977, 95(1), 11–33 Zbl0362.04006
  5. [5] Dolecki S., Multisequences, Quaest. Math., 2006, 29(2), 239–277 http://dx.doi.org/10.2989/16073600609486162 
  6. [6] Dolecki S., Mynard F., Cascades and multifilters, In: Hyperspace Topologies and Applications, La Bussière, October 5–10, 1997, Topology Appl., 2002, 104(1–3), 53–65 Zbl0953.54003
  7. [7] Dolecki S., Starosolski A., Watson S., Extension of multisequences and countably uniradial classes of topologies, Comment. Math. Univ. Carolin., 2003, 44(1), 165–181 Zbl1099.54024
  8. [8] Frolík Z., Sums of ultrafilters, Bull. Amer. Math. Soc., 1967, 73(1), 87–91 http://dx.doi.org/10.1090/S0002-9904-1967-11653-7 Zbl0166.18602
  9. [9] Grimeisen G., Gefilterte Summation von Filtern und iterierte Grenzprozesse. I, Math. Annalen, 1960, 141(4), 318–342 http://dx.doi.org/10.1007/BF01360766 Zbl0096.26201
  10. [10] Grimeisen G., Gefilterte Summation von Filtern und iterierte Grenzprozesse. II, Math. Annalen, 1961, 144(5), 386–417 http://dx.doi.org/10.1007/BF01396535 Zbl0101.14805
  11. [11] Katětov M., On descriptive classes of functions, In: Theory of Sets and Topology, VEB Deutscher Verlag der Wissenschaften, Berlin, 1972, 265–278 
  12. [12] Katětov M., On descriptive classification of functions, In: General Topology and its Relations to Modern Analysis and Algebra III, Prague, August 30–September 3, 1971, Academia, Prague, 1972, 235–242 
  13. [13] Ketonen J., On the existence of P-points in the Stone-Čech compactification of integers, Fund. Math., 1976, 92(2), 91–94 Zbl0339.54035
  14. [14] Laflamme C., A few special ordinal ultrafilters, J. Symbolic Logic, 1996, 61(3), 920–927 http://dx.doi.org/10.2307/2275792 Zbl0871.04004
  15. [15] van Mill J., An introduction to βω, In: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 503–567 
  16. [16] Starosolski A., Fractalness of supercontours, In: Spring Topology and Dynamical Systems Conference, Topology Proc., 2006, 30(1), 389–402 Zbl1131.54020
  17. [17] Starosolski A., P-hierarchy on βω, J. Symbolic Logic, 2008, 73(4), 1202–1214 http://dx.doi.org/10.2178/jsl/1230396914 
  18. [18] Starosolski A., Cascades, order and ultrafilters, preprint avilable at http://arxiv.org/pdf/1201.2146.pdf 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.