# Groups with all subgroups permutable or of finite rank

Open Mathematics (2012)

- Volume: 10, Issue: 3, page 950-957
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topMartyn Dixon, and Yalcin Karatas. "Groups with all subgroups permutable or of finite rank." Open Mathematics 10.3 (2012): 950-957. <http://eudml.org/doc/268993>.

@article{MartynDixon2012,

abstract = {In this paper we investigate the structure of X-groups in which every subgroup is permutable or of finite rank. We show that every subgroup of such a group is permutable.},

author = {Martyn Dixon, Yalcin Karatas},

journal = {Open Mathematics},

keywords = {Permutable subgroup; Finite rank; Locally nilpotent; permutable subgroups; quasinormal subgroups; groups of finite rank; generalized soluble groups},

language = {eng},

number = {3},

pages = {950-957},

title = {Groups with all subgroups permutable or of finite rank},

url = {http://eudml.org/doc/268993},

volume = {10},

year = {2012},

}

TY - JOUR

AU - Martyn Dixon

AU - Yalcin Karatas

TI - Groups with all subgroups permutable or of finite rank

JO - Open Mathematics

PY - 2012

VL - 10

IS - 3

SP - 950

EP - 957

AB - In this paper we investigate the structure of X-groups in which every subgroup is permutable or of finite rank. We show that every subgroup of such a group is permutable.

LA - eng

KW - Permutable subgroup; Finite rank; Locally nilpotent; permutable subgroups; quasinormal subgroups; groups of finite rank; generalized soluble groups

UR - http://eudml.org/doc/268993

ER -

## References

top- [1] Baer R., Heineken H., Radical groups of finite abelian subgroup rank, Illinois J. Math., 1972, 16(4), 533–580 Zbl0248.20052
- [2] Chernikov N.S., A theorem on groups of finite special rank, Ukrainian Math. J., 1990, 42(7), 855–861 http://dx.doi.org/10.1007/BF01062091
- [3] De Falco M., De Giovanni F., Musella C., Schmidt R., Groups in which every non-abelian subgroup is permutable, Rend. Circ. Mat. Palermo, 2003, 52(1), 70–76 http://dx.doi.org/10.1007/BF02871925 Zbl1072.20038
- [4] Dixon M.R., Evans M.J., Smith H., Locally (soluble-by-finite) groups of finite rank, J. Algebra, 1996, 182(3), 756–769 http://dx.doi.org/10.1006/jabr.1996.0200
- [5] Evans M.J., Kim Y., On groups in which every subgroup of infinite rank is subnormal of bounded defect, Comm. Algebra, 2004, 32(7), 2547–2557 http://dx.doi.org/10.1081/AGB-120037398 Zbl1070.20042
- [6] Grün O., Beiträge zur Gruppentheorie. I, J. Reine Angew. Math., 1936, 174, 1–14
- [7] Iwasawa K., On the structure of infinite M-groups, Japan. J. Math., 1943, 18, 709–728 Zbl0061.02504
- [8] Kurdachenko L.A., Smith H., Groups in which all subgroups of infinite rank are subnormal, Glasg. Math. J., 2004, 46(1), 83–89 http://dx.doi.org/10.1017/S0017089503001551 Zbl1059.20023
- [9] Robinson D.J.S., Finiteness Conditions and Generalized Soluble Groups, vols. 1 and 2, Ergeb. Math. Grenzgeb., 62 and 63, Springer, Berlin-Heidelberg-New York, 1972 Zbl0243.20032
- [10] Robinson D.J.S., A Course in the Theory of Groups, 2nd ed., Grad. Texts in Math., 80, Springer, Berlin-Heidelberg-New York, 1996 http://dx.doi.org/10.1007/978-1-4419-8594-1
- [11] Roseblade J.E., On groups in which every subgroup is subnormal, J. Algebra, 1965, 2(4), 402–412 http://dx.doi.org/10.1016/0021-8693(65)90002-5 Zbl0135.04901
- [12] Schmidt R., Subgroup Lattices of Groups, de Gruyter Exp. Math., 14, Walter de Gruyter, Berlin, 1994 http://dx.doi.org/10.1515/9783110868647
- [13] Stonehewer S.E., Permutable subgroups of infinite groups, Math. Z., 1972, 125(1), 1–16 http://dx.doi.org/10.1007/BF01111111 Zbl0219.20021