# Permutations preserving sums of rearranged real series

Open Mathematics (2013)

- Volume: 11, Issue: 5, page 956-965
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topRoman Wituła. "Permutations preserving sums of rearranged real series." Open Mathematics 11.5 (2013): 956-965. <http://eudml.org/doc/268997>.

@article{RomanWituła2013,

abstract = {The aim of this paper is to discuss one of the most interesting and unsolved problems of the real series theory: rearrangements that preserve sums of series. Certain hypothesis about combinatorial description of the corresponding permutations is presented and basic algebraic properties of the family $\mathfrak \{S\}_0 $, introduced by it, are investigated.},

author = {Roman Wituła},

journal = {Open Mathematics},

keywords = {Permutations preserving sums of series; Convergent permutations; Divergent permutations; permutations preserving sums of series; convergent permutations; divergent permutations; rearranged series},

language = {eng},

number = {5},

pages = {956-965},

title = {Permutations preserving sums of rearranged real series},

url = {http://eudml.org/doc/268997},

volume = {11},

year = {2013},

}

TY - JOUR

AU - Roman Wituła

TI - Permutations preserving sums of rearranged real series

JO - Open Mathematics

PY - 2013

VL - 11

IS - 5

SP - 956

EP - 965

AB - The aim of this paper is to discuss one of the most interesting and unsolved problems of the real series theory: rearrangements that preserve sums of series. Certain hypothesis about combinatorial description of the corresponding permutations is presented and basic algebraic properties of the family $\mathfrak {S}_0 $, introduced by it, are investigated.

LA - eng

KW - Permutations preserving sums of series; Convergent permutations; Divergent permutations; permutations preserving sums of series; convergent permutations; divergent permutations; rearranged series

UR - http://eudml.org/doc/268997

ER -

## References

top- [1] Agnew R.P., Permutations preserving convergence of series, Proc. Amer. Math. Soc., 1955, 6(4), 563–564 http://dx.doi.org/10.1090/S0002-9939-1955-0071559-4 Zbl0067.28601
- [2] Garibay F., Greenberg P., Reséndis L., Rivaud J.J., The geometry of sum-preserving permutations, Pacific J. Math., 1988, 135(2), 313–322 http://dx.doi.org/10.2140/pjm.1988.135.313 Zbl0694.40003
- [3] Guha U.C., On Levi’s theorem on rearrangement of convergent series, Indian J. Math., 1967, 9, 91–93 Zbl0173.05801
- [4] Hu M.C., Wang J.K., On rearrangements of series, Bull. Inst. Math. Acad. Sinica, 1979, 7(4), 363–376 Zbl0429.40001
- [5] Kronrod A., On permutation of terms of numerical series, Mat. Sbornik, 1946, 18(60), 237–280 (in Russian) Zbl0061.11809
- [6] Levi F.W., Rearrangement of convergent series, Duke Math. J., 1946, 13, 579–585 http://dx.doi.org/10.1215/S0012-7094-46-01348-8 Zbl0060.15405
- [7] Pleasants P.A.B., Rearrangements that preserve convergence, J. London Math. Soc., 1977, 15(1), 134–142 http://dx.doi.org/10.1112/jlms/s2-15.1.134 Zbl0344.40001
- [8] Pleasants P.A.B., Addendum: “Rearrangements that preserve convergence”, J. Lond. Math. Soc., 1978, 18(3), 576 http://dx.doi.org/10.1112/jlms/s2-18.3.576-s Zbl0368.40003
- [9] Schaefer P., Sum-preserving rearrangements of infinite series, Amer. Math. Monthly, 1981, 88(1), 33–40 http://dx.doi.org/10.2307/2320709 Zbl0455.40007
- [10] Stoller G.S., The convergence-preserving rearrangements of real infinite series, Pacific J. Math., 1977, 73(1), 227–231 http://dx.doi.org/10.2140/pjm.1977.73.227 Zbl0364.40001
- [11] Wituła R., Convergence-preserving functions, Nieuw Arch. Wisk., 1995, 13(1), 31–35 Zbl0858.40004
- [12] Wituła R., The Riemann theorem and divergent permutations, Colloq. Math., 1995, 69(2), 275–287 Zbl0840.40002
- [13] Wituła R., On the set of limit points of the partial sums of series rearranged by a given divergent permutation, J. Math. Anal. Appl., 2010, 362(2), 542–552 http://dx.doi.org/10.1016/j.jmaa.2009.09.028 Zbl1187.40007
- [14] Wituła R., On algebraic properties of some subsets of families of convergent and divergent permutations (manuscript) Zbl1313.40004
- [15] Wituła R., The algebraic properties of the convergent and divergent permutations (manuscript) Zbl1313.40004
- [16] Wituła R., The family $\U0001d509$ of permutations of ℕ (manuscript)
- [17] Wituła R., Słota D., Seweryn R., On Erdös’ theorem for monotonic subsequences, Demonstratio Math., 2007, 40(2), 239–259 Zbl1129.05003
- [18] Nash-Williams C.St.J.A., White D.J., An application of network flows to rearrangement of series, J. Lond. Math. Soc., 1999, 59(2), 637–646 http://dx.doi.org/10.1112/S0024610799007292
- [19] Nash-Williams C.St.J.A., White D.J., Rearrangement of vector series. I, Math. Proc. Cambridge Philos. Soc., 2001, 130(1), 89–109 http://dx.doi.org/10.1017/S0305004100004813 Zbl0984.40004
- [20] Nash-Williams C.St.J.A., White D.J., Rearrangement of vector series. II, Math. Proc. Cambridge Philos. Soc., 2001, 130(1), 111–134 http://dx.doi.org/10.1017/S0305004100004825 Zbl0984.40005

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.