Functional characterizations of p-spaces

Ľubica Holá

Open Mathematics (2013)

  • Volume: 11, Issue: 12, page 2197-2202
  • ISSN: 2391-5455

Abstract

top
We show that a completely regular space Y is a p-space (a Čech-complete space, a locally compact space) if and only if given a dense subspace A of any topological space X and a continuous f: A → Y there are a p-embedded subset (resp. a G δ-subset, an open subset) M of X containing A and a quasicontinuous subcontinuous extension f*: M → Y of f continuous at every point of A. A result concerning a continuous extension to a residual set is also given.

How to cite

top

Ľubica Holá. "Functional characterizations of p-spaces." Open Mathematics 11.12 (2013): 2197-2202. <http://eudml.org/doc/269007>.

@article{ĽubicaHolá2013,
abstract = {We show that a completely regular space Y is a p-space (a Čech-complete space, a locally compact space) if and only if given a dense subspace A of any topological space X and a continuous f: A → Y there are a p-embedded subset (resp. a G δ-subset, an open subset) M of X containing A and a quasicontinuous subcontinuous extension f*: M → Y of f continuous at every point of A. A result concerning a continuous extension to a residual set is also given.},
author = {Ľubica Holá},
journal = {Open Mathematics},
keywords = {p-space; Čech-complete space; p-embedded; Extension of a function; Quasicontinuous function; Subcontinuous function; -space; -embedded; extension of a function; quasicontinuous function; subcontinuous function},
language = {eng},
number = {12},
pages = {2197-2202},
title = {Functional characterizations of p-spaces},
url = {http://eudml.org/doc/269007},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Ľubica Holá
TI - Functional characterizations of p-spaces
JO - Open Mathematics
PY - 2013
VL - 11
IS - 12
SP - 2197
EP - 2202
AB - We show that a completely regular space Y is a p-space (a Čech-complete space, a locally compact space) if and only if given a dense subspace A of any topological space X and a continuous f: A → Y there are a p-embedded subset (resp. a G δ-subset, an open subset) M of X containing A and a quasicontinuous subcontinuous extension f*: M → Y of f continuous at every point of A. A result concerning a continuous extension to a residual set is also given.
LA - eng
KW - p-space; Čech-complete space; p-embedded; Extension of a function; Quasicontinuous function; Subcontinuous function; -space; -embedded; extension of a function; quasicontinuous function; subcontinuous function
UR - http://eudml.org/doc/269007
ER -

References

top
  1. [1] Alleche B., Arhangel’skiĭ A.V., Calbrix J., Weak developments and metrization, Topology Appl., 2000, 100(1), 23–38 http://dx.doi.org/10.1016/S0166-8641(98)00135-7 Zbl0935.54027
  2. [2] Baire R., Sur les functions des variables réelles, Ann. Mat. Pura Appl., 1899, 3, 1–123 http://dx.doi.org/10.1007/BF02419243 
  3. [3] Fuller R.V., Relations among continuous and various non-continuous functions, Pacific J. Math., 1968, 25(3), 495–509 http://dx.doi.org/10.2140/pjm.1968.25.495 Zbl0165.25304
  4. [4] Borsík J., Points of continuity and quasicontinuity, Cent. Eur. J. Math., 2010, 8(1), 179–190 http://dx.doi.org/10.2478/s11533-009-0071-y Zbl1204.54010
  5. [5] Borsík J., Holá Ľ., Holý D., Baire spaces and quasicontinuous mappings, Filomat, 2011, 25(3), 69–83 http://dx.doi.org/10.2298/FIL1103069B Zbl1289.54098
  6. [6] Burke D., Lutzer D., Levi S., Functional characterizations of certain p-spaces, Topology Appl., 1985, 20(2), 161–165 http://dx.doi.org/10.1016/0166-8641(85)90076-8 
  7. [7] Čech E., Topological Spaces, Czechoslovak Academy of Sciences/Interscience, Prague/London, 1966 
  8. [8] Christensen J.P.R., Theorems of Namioka and R.E. Johnson type for upper semicontinuous and compact valued setvalued mappings, Proc. Amer. Math. Soc., 1982, 86(4), 649–655 http://dx.doi.org/10.1090/S0002-9939-1982-0674099-0 
  9. [9] Drewnowski L., Labuda I., On minimal upper semicontinuous compact-valued maps, Rocky Mountain J. Math., 1990, 20(3), 737–752 http://dx.doi.org/10.1216/rmjm/1181073096 Zbl0742.54006
  10. [10] Engelking R., General Topology, Monogr. Mat., 60, PWN, Warsaw, 1977 
  11. [11] Holá Ľ., An extension theorem for continuous functions, Czechoslovak Math. J., 1988, 38(113)(3), 398–403 Zbl0684.54012
  12. [12] Holá Ľ., Holý D., Minimal USCO maps, densely continuous forms and upper semi-continuous functions, Rocky Mountain J. Math., 2009, 39(2), 545–562 http://dx.doi.org/10.1216/RMJ-2009-39-2-545 Zbl1178.54004
  13. [13] Holá Ľ., Holý D., Pointwise convergence of quasicontinuous mappings and Baire spaces, Rocky Mountain J. Math., 2011, 41(6), 1883–1894 http://dx.doi.org/10.1216/RMJ-2011-41-6-1883 Zbl1241.54008
  14. [14] Holá Ľ., Piotrowski Z., Set of continuity points of functions with values in generalized metric spaces, Tatra Mt. Math. Publ., 2009, 42(1), 149–160 Zbl1212.54040
  15. [15] Kelley J.L., General Topology, Van Nostrand, Toronto-New York-London, 1955 
  16. [16] Kempisty S., Sur les fonctions quasicontinues, Fund. Math., 1932, 19, 184–197 Zbl58.0246.01
  17. [17] Kenderov P.S., Kortezov I.S., Moors W.B., Continuity points of quasi-continuous mappings, Topology Appl., 2001, 109(3), 321–346 http://dx.doi.org/10.1016/S0166-8641(99)00180-7 Zbl1079.54509
  18. [18] Neubrunn T., Quasi-continuity, Real Anal. Exchange, 1988/89, 14(2), 259–306 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.