On Cayley graphs of completely 0-simple semigroups
Open Mathematics (2013)
- Volume: 11, Issue: 5, page 924-930
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topShoufeng Wang, and Yinghui Li. "On Cayley graphs of completely 0-simple semigroups." Open Mathematics 11.5 (2013): 924-930. <http://eudml.org/doc/269011>.
@article{ShoufengWang2013,
abstract = {We give necessary and sufficient conditions for various vertex-transitivity of Cayley graphs of the class of completely 0-simple semigroups and its several subclasses. Moreover, the question when the Cayley graphs of completely 0-simple semigroups are undirected is considered.},
author = {Shoufeng Wang, Yinghui Li},
journal = {Open Mathematics},
keywords = {Cayley graphs; Vertex-transitive graphs; Undirected graphs; Completely 0-simple semigroups; vertex-transitive graphs; undirected graphs; completely 0-simple semigroups},
language = {eng},
number = {5},
pages = {924-930},
title = {On Cayley graphs of completely 0-simple semigroups},
url = {http://eudml.org/doc/269011},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Shoufeng Wang
AU - Yinghui Li
TI - On Cayley graphs of completely 0-simple semigroups
JO - Open Mathematics
PY - 2013
VL - 11
IS - 5
SP - 924
EP - 930
AB - We give necessary and sufficient conditions for various vertex-transitivity of Cayley graphs of the class of completely 0-simple semigroups and its several subclasses. Moreover, the question when the Cayley graphs of completely 0-simple semigroups are undirected is considered.
LA - eng
KW - Cayley graphs; Vertex-transitive graphs; Undirected graphs; Completely 0-simple semigroups; vertex-transitive graphs; undirected graphs; completely 0-simple semigroups
UR - http://eudml.org/doc/269011
ER -
References
top- [1] Chartrand G., Lesniak L., Graphs&Digraphs, 3rd ed., Chapman&Hall, London, 1996
- [2] Fan S., Zeng Y., On Cayley graphs of bands, Semigroup Forum, 2007, 74(1), 99–105 http://dx.doi.org/10.1007/s00233-006-0656-8 Zbl1125.05051
- [3] Heydemann M.-C., Cayley graphs and interconnection networks, In: Graph Symmetry, Montreal, July 1–12, 1996, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 497, Kluwer, Dordrecht, 1997, 167–224
- [4] Howie J.M., An Introduction to Semigroup Theory, L.M.S. Monographs, 7, Academic Press, London-New York, 1976
- [5] Jiang Z., An answer to a question of Kelarev and Praeger on Cayley graphs of semigroups, Semigroup Forum, 2004, 69(3), 457–461 Zbl1065.20069
- [6] Kelarev A.V., On undirected Cayley graphs, Australas. J. Combin., 2002, 25, 73–78 Zbl0993.05085
- [7] Kelarev A.V., Graph Algebras and Automata, Monogr. Textbooks Pure Appl. Math., 257, Marcel Dekker, New York, 2003
- [8] Kelarev A.V., Praeger C.E., On transitive Cayley graphs of groups and semigroups, European J. Combin., 2003, 24(1), 59–72 http://dx.doi.org/10.1016/S0195-6698(02)00120-8 Zbl1011.05027
- [9] Kelarev A., Ryan J., Yearwood J., Cayley graphs as classifiers for data mining: the influence of asymmetries, Discrete Math., 2009, 309(17), 5360–5369 http://dx.doi.org/10.1016/j.disc.2008.11.030 Zbl1206.05050
- [10] Khosravi B., Mahmoudi M., On Cayley graphs of rectangular groups, Discrete Math., 2010, 310(4), 804–811 http://dx.doi.org/10.1016/j.disc.2009.09.015 Zbl1208.05048
- [11] Panma S., Knauer U., Arworn Sr., On transitive Cayley graphs of strong semilattices of right (left) groups, Discrete Math., 2009, 309(17), 5393–5403 http://dx.doi.org/10.1016/j.disc.2008.11.038 Zbl1198.05095
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.