The automorphism groups of foliations with transverse linear connection

Nina Zhukova; Anna Dolgonosova

Open Mathematics (2013)

  • Volume: 11, Issue: 12, page 2076-2088
  • ISSN: 2391-5455

Abstract

top
The category of foliations is considered. In this category morphisms are differentiable maps sending leaves of one foliation into leaves of the other foliation. We prove that the automorphism group of a foliation with transverse linear connection is an infinite-dimensional Lie group modeled on LF-spaces. This result extends the corresponding result of Macias-Virgós and Sanmartín Carbón for Riemannian foliations. In particular, our result is valid for Lorentzian and pseudo-Riemannian foliations.

How to cite

top

Nina Zhukova, and Anna Dolgonosova. "The automorphism groups of foliations with transverse linear connection." Open Mathematics 11.12 (2013): 2076-2088. <http://eudml.org/doc/269020>.

@article{NinaZhukova2013,
abstract = {The category of foliations is considered. In this category morphisms are differentiable maps sending leaves of one foliation into leaves of the other foliation. We prove that the automorphism group of a foliation with transverse linear connection is an infinite-dimensional Lie group modeled on LF-spaces. This result extends the corresponding result of Macias-Virgós and Sanmartín Carbón for Riemannian foliations. In particular, our result is valid for Lorentzian and pseudo-Riemannian foliations.},
author = {Nina Zhukova, Anna Dolgonosova},
journal = {Open Mathematics},
keywords = {Foliation; Linear connection; Automorphism group; Foliated bundle; Infinite-dimensional Lie group; foliation; linear connection; automorphism group; foliated bundle; infinite-dimensional Lie group},
language = {eng},
number = {12},
pages = {2076-2088},
title = {The automorphism groups of foliations with transverse linear connection},
url = {http://eudml.org/doc/269020},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Nina Zhukova
AU - Anna Dolgonosova
TI - The automorphism groups of foliations with transverse linear connection
JO - Open Mathematics
PY - 2013
VL - 11
IS - 12
SP - 2076
EP - 2088
AB - The category of foliations is considered. In this category morphisms are differentiable maps sending leaves of one foliation into leaves of the other foliation. We prove that the automorphism group of a foliation with transverse linear connection is an infinite-dimensional Lie group modeled on LF-spaces. This result extends the corresponding result of Macias-Virgós and Sanmartín Carbón for Riemannian foliations. In particular, our result is valid for Lorentzian and pseudo-Riemannian foliations.
LA - eng
KW - Foliation; Linear connection; Automorphism group; Foliated bundle; Infinite-dimensional Lie group; foliation; linear connection; automorphism group; foliated bundle; infinite-dimensional Lie group
UR - http://eudml.org/doc/269020
ER -

References

top
  1. [1] Bel’ko I.V., Affine transformations of a transversal projectable connection of a manifold with a foliation, Math. USSRSb., 1983, 45, 191–204 http://dx.doi.org/10.1070/SM1983v045n02ABEH001003 
  2. [2] Besse A.L., Einstein Manifolds, Classics Math., Springer, Berlin, 2008 
  3. [3] Kamber F.W., Tondeur P., G-foliations and their characteristic classes, Bull. Amer. Math. Soc., 1978, 84(6), 1086–1124 http://dx.doi.org/10.1090/S0002-9904-1978-14546-7 Zbl0405.57017
  4. [4] Kobayashi S., Nomizu K., Foundations of Differential Geometry I, Interscience, New York-London, 1963 Zbl0119.37502
  5. [5] Kriegl A., Michor P.W., Aspects of the theory of infinite-dimensional manifolds, Differential Geom. Appl., 1991, 1(2), 159–176 http://dx.doi.org/10.1016/0926-2245(91)90029-9 
  6. [6] Lewis A.D., Affine connections and distributions with applications to nonholonomic mechanics, In: Pacific Institute of Mathematical Sciences Workshop on Nonholonomic Constraints in Dynamics, Calgary, August 26–30, 1997, Rep. Math. Phys., 1998, 42(1-2), 135–164 
  7. [7] Macias-Virgós E., Sanmartín Carbón E., Manifolds of maps in Riemannian foliations, Geom. Dedicata, 2000, 79(2), 143–156 http://dx.doi.org/10.1023/A:1005217109018 Zbl0946.57033
  8. [8] Michor P.W., Manifolds of Differentiable Mappings, Shiva Math. Ser., 3, Shiva, Nantwich, 1980 
  9. [9] Molino P., Propriétés cohomologiques et propriétés topologiques des feuilletages à connexion transverse projetable, Topology, 1973, 12, 317–325 http://dx.doi.org/10.1016/0040-9383(73)90026-8 
  10. [10] Molino P., Riemannian Foliations, Progr. Math., 73, Birkhäuser, Boston, 1988 http://dx.doi.org/10.1007/978-1-4684-8670-4 
  11. [11] Palais R.S., Foundations of Global Non-Linear Analysis, Benjamin, New York-Amsterdam, 1968 Zbl0164.11102
  12. [12] Postnikov M.M., Lectures in Geometry V, Factorial, Moscow, 1998 (in Russian) 
  13. [13] Walker A.G., Connexions for parallel distributions in the large, Quart. J. Math. Oxford Ser., 1955, 6, 301–308 http://dx.doi.org/10.1093/qmath/6.1.301 Zbl0066.40203
  14. [14] Willmore T.J., Connexions for systems of parallel distributions, Quart. J. Math. Oxford Ser., 1956, 7, 269–276 http://dx.doi.org/10.1093/qmath/7.1.269 Zbl0074.38001
  15. [15] Zhukova N.I., Minimal sets of Cartan foliations, Proc. Steklov Inst. Math., 2007, 256(1), 105–135 http://dx.doi.org/10.1134/S0081543807010075 Zbl1246.37046
  16. [16] Zhukova N.I., Global attractors of complete conformal foliations, Sb. Math., 2012, 203(3–4), 380–405 http://dx.doi.org/10.1070/SM2012v203n03ABEH004227 Zbl1307.53019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.