# The automorphism groups of foliations with transverse linear connection

Nina Zhukova; Anna Dolgonosova

Open Mathematics (2013)

- Volume: 11, Issue: 12, page 2076-2088
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topNina Zhukova, and Anna Dolgonosova. "The automorphism groups of foliations with transverse linear connection." Open Mathematics 11.12 (2013): 2076-2088. <http://eudml.org/doc/269020>.

@article{NinaZhukova2013,

abstract = {The category of foliations is considered. In this category morphisms are differentiable maps sending leaves of one foliation into leaves of the other foliation. We prove that the automorphism group of a foliation with transverse linear connection is an infinite-dimensional Lie group modeled on LF-spaces. This result extends the corresponding result of Macias-Virgós and Sanmartín Carbón for Riemannian foliations. In particular, our result is valid for Lorentzian and pseudo-Riemannian foliations.},

author = {Nina Zhukova, Anna Dolgonosova},

journal = {Open Mathematics},

keywords = {Foliation; Linear connection; Automorphism group; Foliated bundle; Infinite-dimensional Lie group; foliation; linear connection; automorphism group; foliated bundle; infinite-dimensional Lie group},

language = {eng},

number = {12},

pages = {2076-2088},

title = {The automorphism groups of foliations with transverse linear connection},

url = {http://eudml.org/doc/269020},

volume = {11},

year = {2013},

}

TY - JOUR

AU - Nina Zhukova

AU - Anna Dolgonosova

TI - The automorphism groups of foliations with transverse linear connection

JO - Open Mathematics

PY - 2013

VL - 11

IS - 12

SP - 2076

EP - 2088

AB - The category of foliations is considered. In this category morphisms are differentiable maps sending leaves of one foliation into leaves of the other foliation. We prove that the automorphism group of a foliation with transverse linear connection is an infinite-dimensional Lie group modeled on LF-spaces. This result extends the corresponding result of Macias-Virgós and Sanmartín Carbón for Riemannian foliations. In particular, our result is valid for Lorentzian and pseudo-Riemannian foliations.

LA - eng

KW - Foliation; Linear connection; Automorphism group; Foliated bundle; Infinite-dimensional Lie group; foliation; linear connection; automorphism group; foliated bundle; infinite-dimensional Lie group

UR - http://eudml.org/doc/269020

ER -

## References

top- [1] Bel’ko I.V., Affine transformations of a transversal projectable connection of a manifold with a foliation, Math. USSRSb., 1983, 45, 191–204 http://dx.doi.org/10.1070/SM1983v045n02ABEH001003
- [2] Besse A.L., Einstein Manifolds, Classics Math., Springer, Berlin, 2008
- [3] Kamber F.W., Tondeur P., G-foliations and their characteristic classes, Bull. Amer. Math. Soc., 1978, 84(6), 1086–1124 http://dx.doi.org/10.1090/S0002-9904-1978-14546-7 Zbl0405.57017
- [4] Kobayashi S., Nomizu K., Foundations of Differential Geometry I, Interscience, New York-London, 1963 Zbl0119.37502
- [5] Kriegl A., Michor P.W., Aspects of the theory of infinite-dimensional manifolds, Differential Geom. Appl., 1991, 1(2), 159–176 http://dx.doi.org/10.1016/0926-2245(91)90029-9
- [6] Lewis A.D., Affine connections and distributions with applications to nonholonomic mechanics, In: Pacific Institute of Mathematical Sciences Workshop on Nonholonomic Constraints in Dynamics, Calgary, August 26–30, 1997, Rep. Math. Phys., 1998, 42(1-2), 135–164
- [7] Macias-Virgós E., Sanmartín Carbón E., Manifolds of maps in Riemannian foliations, Geom. Dedicata, 2000, 79(2), 143–156 http://dx.doi.org/10.1023/A:1005217109018 Zbl0946.57033
- [8] Michor P.W., Manifolds of Differentiable Mappings, Shiva Math. Ser., 3, Shiva, Nantwich, 1980
- [9] Molino P., Propriétés cohomologiques et propriétés topologiques des feuilletages à connexion transverse projetable, Topology, 1973, 12, 317–325 http://dx.doi.org/10.1016/0040-9383(73)90026-8
- [10] Molino P., Riemannian Foliations, Progr. Math., 73, Birkhäuser, Boston, 1988 http://dx.doi.org/10.1007/978-1-4684-8670-4
- [11] Palais R.S., Foundations of Global Non-Linear Analysis, Benjamin, New York-Amsterdam, 1968 Zbl0164.11102
- [12] Postnikov M.M., Lectures in Geometry V, Factorial, Moscow, 1998 (in Russian)
- [13] Walker A.G., Connexions for parallel distributions in the large, Quart. J. Math. Oxford Ser., 1955, 6, 301–308 http://dx.doi.org/10.1093/qmath/6.1.301 Zbl0066.40203
- [14] Willmore T.J., Connexions for systems of parallel distributions, Quart. J. Math. Oxford Ser., 1956, 7, 269–276 http://dx.doi.org/10.1093/qmath/7.1.269 Zbl0074.38001
- [15] Zhukova N.I., Minimal sets of Cartan foliations, Proc. Steklov Inst. Math., 2007, 256(1), 105–135 http://dx.doi.org/10.1134/S0081543807010075 Zbl1246.37046
- [16] Zhukova N.I., Global attractors of complete conformal foliations, Sb. Math., 2012, 203(3–4), 380–405 http://dx.doi.org/10.1070/SM2012v203n03ABEH004227 Zbl1307.53019

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.