The automorphism groups of foliations with transverse linear connection
Nina Zhukova; Anna Dolgonosova
Open Mathematics (2013)
- Volume: 11, Issue: 12, page 2076-2088
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topNina Zhukova, and Anna Dolgonosova. "The automorphism groups of foliations with transverse linear connection." Open Mathematics 11.12 (2013): 2076-2088. <http://eudml.org/doc/269020>.
@article{NinaZhukova2013,
abstract = {The category of foliations is considered. In this category morphisms are differentiable maps sending leaves of one foliation into leaves of the other foliation. We prove that the automorphism group of a foliation with transverse linear connection is an infinite-dimensional Lie group modeled on LF-spaces. This result extends the corresponding result of Macias-Virgós and Sanmartín Carbón for Riemannian foliations. In particular, our result is valid for Lorentzian and pseudo-Riemannian foliations.},
author = {Nina Zhukova, Anna Dolgonosova},
journal = {Open Mathematics},
keywords = {Foliation; Linear connection; Automorphism group; Foliated bundle; Infinite-dimensional Lie group; foliation; linear connection; automorphism group; foliated bundle; infinite-dimensional Lie group},
language = {eng},
number = {12},
pages = {2076-2088},
title = {The automorphism groups of foliations with transverse linear connection},
url = {http://eudml.org/doc/269020},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Nina Zhukova
AU - Anna Dolgonosova
TI - The automorphism groups of foliations with transverse linear connection
JO - Open Mathematics
PY - 2013
VL - 11
IS - 12
SP - 2076
EP - 2088
AB - The category of foliations is considered. In this category morphisms are differentiable maps sending leaves of one foliation into leaves of the other foliation. We prove that the automorphism group of a foliation with transverse linear connection is an infinite-dimensional Lie group modeled on LF-spaces. This result extends the corresponding result of Macias-Virgós and Sanmartín Carbón for Riemannian foliations. In particular, our result is valid for Lorentzian and pseudo-Riemannian foliations.
LA - eng
KW - Foliation; Linear connection; Automorphism group; Foliated bundle; Infinite-dimensional Lie group; foliation; linear connection; automorphism group; foliated bundle; infinite-dimensional Lie group
UR - http://eudml.org/doc/269020
ER -
References
top- [1] Bel’ko I.V., Affine transformations of a transversal projectable connection of a manifold with a foliation, Math. USSRSb., 1983, 45, 191–204 http://dx.doi.org/10.1070/SM1983v045n02ABEH001003
- [2] Besse A.L., Einstein Manifolds, Classics Math., Springer, Berlin, 2008
- [3] Kamber F.W., Tondeur P., G-foliations and their characteristic classes, Bull. Amer. Math. Soc., 1978, 84(6), 1086–1124 http://dx.doi.org/10.1090/S0002-9904-1978-14546-7 Zbl0405.57017
- [4] Kobayashi S., Nomizu K., Foundations of Differential Geometry I, Interscience, New York-London, 1963 Zbl0119.37502
- [5] Kriegl A., Michor P.W., Aspects of the theory of infinite-dimensional manifolds, Differential Geom. Appl., 1991, 1(2), 159–176 http://dx.doi.org/10.1016/0926-2245(91)90029-9
- [6] Lewis A.D., Affine connections and distributions with applications to nonholonomic mechanics, In: Pacific Institute of Mathematical Sciences Workshop on Nonholonomic Constraints in Dynamics, Calgary, August 26–30, 1997, Rep. Math. Phys., 1998, 42(1-2), 135–164
- [7] Macias-Virgós E., Sanmartín Carbón E., Manifolds of maps in Riemannian foliations, Geom. Dedicata, 2000, 79(2), 143–156 http://dx.doi.org/10.1023/A:1005217109018 Zbl0946.57033
- [8] Michor P.W., Manifolds of Differentiable Mappings, Shiva Math. Ser., 3, Shiva, Nantwich, 1980
- [9] Molino P., Propriétés cohomologiques et propriétés topologiques des feuilletages à connexion transverse projetable, Topology, 1973, 12, 317–325 http://dx.doi.org/10.1016/0040-9383(73)90026-8
- [10] Molino P., Riemannian Foliations, Progr. Math., 73, Birkhäuser, Boston, 1988 http://dx.doi.org/10.1007/978-1-4684-8670-4
- [11] Palais R.S., Foundations of Global Non-Linear Analysis, Benjamin, New York-Amsterdam, 1968 Zbl0164.11102
- [12] Postnikov M.M., Lectures in Geometry V, Factorial, Moscow, 1998 (in Russian)
- [13] Walker A.G., Connexions for parallel distributions in the large, Quart. J. Math. Oxford Ser., 1955, 6, 301–308 http://dx.doi.org/10.1093/qmath/6.1.301 Zbl0066.40203
- [14] Willmore T.J., Connexions for systems of parallel distributions, Quart. J. Math. Oxford Ser., 1956, 7, 269–276 http://dx.doi.org/10.1093/qmath/7.1.269 Zbl0074.38001
- [15] Zhukova N.I., Minimal sets of Cartan foliations, Proc. Steklov Inst. Math., 2007, 256(1), 105–135 http://dx.doi.org/10.1134/S0081543807010075 Zbl1246.37046
- [16] Zhukova N.I., Global attractors of complete conformal foliations, Sb. Math., 2012, 203(3–4), 380–405 http://dx.doi.org/10.1070/SM2012v203n03ABEH004227 Zbl1307.53019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.