The incidence class and the hierarchy of orbits

László Fehér; Zsolt Patakfalvi

Open Mathematics (2009)

  • Volume: 7, Issue: 3, page 429-441
  • ISSN: 2391-5455

Abstract

top
R. Rimányi defined the incidence class of two singularities η and ζ as [η]|ζ, the restriction of the Thom polynomial of η to ζ. He conjectured that (under mild conditions) [η]|ζ ≠ 0 ⇔ ζ ⊂ η ¯ . Generalizing this notion we define the incidence class of two orbits η and ζ of a representation. We give a sufficient condition (positivity) for ζ to have the property that [η]|ζ ≠ 0 ⇔ ζ ⊂ η ¯ for any other orbit η. We show that for many interesting cases, e.g. the quiver representations of Dynkin type positivity holds for all orbits. In other words in these cases the incidence classes completely determine the hierarchy of the orbits. We also study the case of singularities where positivity doesn’t hold for all orbits.

How to cite

top

László Fehér, and Zsolt Patakfalvi. "The incidence class and the hierarchy of orbits." Open Mathematics 7.3 (2009): 429-441. <http://eudml.org/doc/269032>.

@article{LászlóFehér2009,
abstract = {R. Rimányi defined the incidence class of two singularities η and ζ as [η]|ζ, the restriction of the Thom polynomial of η to ζ. He conjectured that (under mild conditions) [η]|ζ ≠ 0 ⇔ ζ ⊂ \[ \bar\{\eta \}\] . Generalizing this notion we define the incidence class of two orbits η and ζ of a representation. We give a sufficient condition (positivity) for ζ to have the property that [η]|ζ ≠ 0 ⇔ ζ ⊂ \[ \bar\{\eta \}\] for any other orbit η. We show that for many interesting cases, e.g. the quiver representations of Dynkin type positivity holds for all orbits. In other words in these cases the incidence classes completely determine the hierarchy of the orbits. We also study the case of singularities where positivity doesn’t hold for all orbits.},
author = {László Fehér, Zsolt Patakfalvi},
journal = {Open Mathematics},
keywords = {Thom polynomial; Equivariant maps; Equivariant Poincaré dual; Multidegree; Joseph polynomial; Incidence class; equivariant maps; equivariant Poincaré dual; multidegree; incidence class},
language = {eng},
number = {3},
pages = {429-441},
title = {The incidence class and the hierarchy of orbits},
url = {http://eudml.org/doc/269032},
volume = {7},
year = {2009},
}

TY - JOUR
AU - László Fehér
AU - Zsolt Patakfalvi
TI - The incidence class and the hierarchy of orbits
JO - Open Mathematics
PY - 2009
VL - 7
IS - 3
SP - 429
EP - 441
AB - R. Rimányi defined the incidence class of two singularities η and ζ as [η]|ζ, the restriction of the Thom polynomial of η to ζ. He conjectured that (under mild conditions) [η]|ζ ≠ 0 ⇔ ζ ⊂ \[ \bar{\eta }\] . Generalizing this notion we define the incidence class of two orbits η and ζ of a representation. We give a sufficient condition (positivity) for ζ to have the property that [η]|ζ ≠ 0 ⇔ ζ ⊂ \[ \bar{\eta }\] for any other orbit η. We show that for many interesting cases, e.g. the quiver representations of Dynkin type positivity holds for all orbits. In other words in these cases the incidence classes completely determine the hierarchy of the orbits. We also study the case of singularities where positivity doesn’t hold for all orbits.
LA - eng
KW - Thom polynomial; Equivariant maps; Equivariant Poincaré dual; Multidegree; Joseph polynomial; Incidence class; equivariant maps; equivariant Poincaré dual; multidegree; incidence class
UR - http://eudml.org/doc/269032
ER -

References

top
  1. [1] Arnol’d V.I., Guseĭn-Zade S.M., Varchenko A.N., Singularities of differentiable maps II, Monographs in Mathematics, Birkhauser Boston Inc., Boston, MA, 1988 
  2. [2] Buch A.S., Rimanyi R., Specializations of Grothendieck polynomials, C. R. Math. Acad. Sci. Paris, 2004, 339(1), 1–4 Zbl1051.14062
  3. [3] Edidin D., Graham W., Equivariant intersection theory, Invent. Math., 1998, 131(3), 595–634 http://dx.doi.org/10.1007/s002220050214 Zbl0940.14003
  4. [4] Fehér L.M., Némethi A., Rimányi R., The degree of the discriminant of irreducible representations, J. Algebraic Geometry, 2008, 17, 751–780 Zbl1155.20045
  5. [5] Fehér L., Rimányi R., Classes of degeneracy loci for quivers: the Thom polynomial point of view, Duke Math. J., 2002, 114(2), 193–213 http://dx.doi.org/10.1215/S0012-7094-02-11421-5 Zbl1054.14010
  6. [6] Fehér L.M., Rimányi R., Thom polynomials with integer coefficients, Illinois J. Math., 2002, 46(4), 1145–1158 Zbl1029.57028
  7. [7] Fehér L.M., Rimányi R., Schur and Schubert polynomials as Thom polynomials-cohomology of moduli spaces, Cent. Eur. J. Math., 2003, 1(4), 418–434 http://dx.doi.org/10.2478/BF02475176 Zbl1038.57008
  8. [8] Fehér L.M., Rimányi R., Calculation of Thom polynomials and other cohomological obstructions for group actions, In: Real and complex singularities, Contemp. Math., Amer. Math. Soc., Providence, RI, 2004, 354, 69–93 Zbl1074.32008
  9. [9] Fulton W., Young tableaux, London Mathematical Society Student Texts, Vol. 35, Cambridge University Press, Cambridge, 1997 
  10. [10] Goldin R.F., The cohomology ring of weight varieties and polygon spaces, Adv. in Math., 2001, 160, 175–204 http://dx.doi.org/10.1006/aima.2001.1984 Zbl1117.14051
  11. [11] Kazarian M.É., Characteristic classes of singularity theory, In: The Arnold-Gelfand mathematical seminars, pages, Birkhäuser Boston, Boston, MA, 1997, 325–340 Zbl0872.57034
  12. [12] Knutson A., Miller E., Gröbner geometry of Schubert polynomials, Annals of Math., 2005, 2(3), 1245–1318 http://dx.doi.org/10.4007/annals.2005.161.1245 Zbl1089.14007
  13. [13] Knutson A., Miller E., Shimozono M., Four positive formulae for type a quiver polynomials, Invent. Math., 2006, 166, 229–325 http://dx.doi.org/10.1007/s00222-006-0505-0 Zbl1107.14046
  14. [14] Knutson A., Shimozono M., Kempf collapsing and quiver loci, preprint available at http://arxiv.org/abs/math/0608327 
  15. [15] Kumar S., The nil hecke ring and singularity of Schubert varieties, Invent. Math., 1996, 123(3), 471–506 http://dx.doi.org/10.1007/s002220050038 Zbl0863.14031
  16. [16] Lascoux A., Schützenberger M.-P., Décompositions dans l’algébre des differences divisées, Discrete Math., 1992, 99, 165–179 http://dx.doi.org/10.1016/0012-365X(92)90372-M 
  17. [17] Mather J., Stability of C ∞ mappings. VI. the nice dimensions, In: Liverpool Singularities-Symposium I, number 192 in SLNM, 1971, 207–253 
  18. [18] Miller E., Sturmfels B., Combinatorial commutative algebra, Springer, Berlin, 2004 Zbl1090.13001
  19. [19] Patakfalvi Z., Orbit structures and incidence, Master’s thesis, Eotvos University, Budapest, 2006 
  20. [20] Porteous I., Simple singularities of maps, In: Liverpool Singularities-Symposium I, number 192 in SLNM, 1971, 286–307 
  21. [21] Rimányi R., Generalized Pontrjagin-Thom construction for singular maps, PhD thesis, Eotvos University, Budapest, 1999 
  22. [22] Rimányi R., Thom polynomials, symmetries and incidences of singularities, Invent. Math., 2001, 143(3), 499–521 http://dx.doi.org/10.1007/s002220000113 Zbl0985.32012
  23. [23] Wall C.T.C., Nets of conics, Math. Proc. Cambridge Philos. Soc., 1977, 81(3), 351–364 http://dx.doi.org/10.1017/S0305004100053421 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.