Nonlinear Leray-Schauder alternatives and application to nonlinear problem arising in the theory of growing cell population

Afif Amar

Open Mathematics (2011)

  • Volume: 9, Issue: 4, page 851-865
  • ISSN: 2391-5455

Abstract

top
Motivated by a mathematical model of an age structured proliferating cell population, we state some new variants of Leray-Schauder type fixed point theorems for (ws)-compact operators. Further, we apply our results to establish some new existence and locality principles for nonlinear boundary value problem arising in the theory of growing cell population in L 1-setting. Besides, a topological structure of the set of solutions is provided.

How to cite

top

Afif Amar. "Nonlinear Leray-Schauder alternatives and application to nonlinear problem arising in the theory of growing cell population." Open Mathematics 9.4 (2011): 851-865. <http://eudml.org/doc/269033>.

@article{AfifAmar2011,
abstract = {Motivated by a mathematical model of an age structured proliferating cell population, we state some new variants of Leray-Schauder type fixed point theorems for (ws)-compact operators. Further, we apply our results to establish some new existence and locality principles for nonlinear boundary value problem arising in the theory of growing cell population in L 1-setting. Besides, a topological structure of the set of solutions is provided.},
author = {Afif Amar},
journal = {Open Mathematics},
keywords = {Nonlinear boundary value problem; Cell population dynamics; Fixed point theorems; Regular operators; cell population dynamics; nonlinear boundary value problem},
language = {eng},
number = {4},
pages = {851-865},
title = {Nonlinear Leray-Schauder alternatives and application to nonlinear problem arising in the theory of growing cell population},
url = {http://eudml.org/doc/269033},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Afif Amar
TI - Nonlinear Leray-Schauder alternatives and application to nonlinear problem arising in the theory of growing cell population
JO - Open Mathematics
PY - 2011
VL - 9
IS - 4
SP - 851
EP - 865
AB - Motivated by a mathematical model of an age structured proliferating cell population, we state some new variants of Leray-Schauder type fixed point theorems for (ws)-compact operators. Further, we apply our results to establish some new existence and locality principles for nonlinear boundary value problem arising in the theory of growing cell population in L 1-setting. Besides, a topological structure of the set of solutions is provided.
LA - eng
KW - Nonlinear boundary value problem; Cell population dynamics; Fixed point theorems; Regular operators; cell population dynamics; nonlinear boundary value problem
UR - http://eudml.org/doc/269033
ER -

References

top
  1. [1] Agarwal R.P., O’Regan D., Liu X., A Leray-Schauder alternative for weakly-strongly sequentially continuous weakly compact maps, Fixed Point Theory Appl., 2005, 1, 1–10 http://dx.doi.org/10.1155/FPTA.2005.1 Zbl1098.47046
  2. [2] Ben Amar A., Jeribi A., Mnif M., On a generalization of the Schauder and Krasnosel’skii fixed points theorems on Dunford-Pettis spaces and applications, Math. Methods Appl. Sci., 2005, 28(14), 1737–1756 http://dx.doi.org/10.1002/mma.639 Zbl1186.47043
  3. [3] Ben Amar A., Jeribi A., Mnif M., Some fixed point theorems and application to biological model, Numer. Funct. Anal. Optim., 2008, 29(1), 1–23 http://dx.doi.org/10.1080/01630560701749482 Zbl1130.47305
  4. [4] Ben Amar A., Mnif M., Leray-Schauder alternatives for weakly sequentially continuous mappings and application to transport equation, Math. Methods Appl. Sci., 2010, 33(1), 80–90 Zbl1193.47056
  5. [5] Browder F.E., Problèmes Non-Linéaires, Séminaire de Mathématiques Supérieures, 15, Les Presses de l’Université de Montréal, Montréal, 1966 Zbl0153.17302
  6. [6] Boulanouar M., A mathematical study in the theory of dynamic population., J. Math. Anal. Appl., 2001, 255(1), 230–259 http://dx.doi.org/10.1006/jmaa.2000.7237 Zbl0979.92013
  7. [7] Diestel J., A survey of results related to the Dunford-Pettis property, In: Conference on Integration, Topology, and Geometry in Linear Spaces, Chapel Hill, 1979, Contemp. Math., 2, American Mathematical Society, Providence, 1980, 15–60 
  8. [8] Dodds P., Fremlin D.H., Compact operator in Banach lattices, Israel J. Math., 1979, 34(4), 287–320 http://dx.doi.org/10.1007/BF02760610 Zbl0438.47042
  9. [9] Dunford N., Pettis B.J., Linear operations on summable functions, Trans. Amer. Math. Soc, 1940, 47, 323–392 http://dx.doi.org/10.1090/S0002-9947-1940-0002020-4 Zbl0023.32902
  10. [10] Dunford N., Schwartz J.T., Linear Operators. I. General Theory, Pure Appl. Math., 7, Interscience, London, 1958 Zbl0084.10402
  11. [11] Edwards R.E., Functional Analysis, Theory and Applications, Holt, Reinhart and Winston, New York-Toronto-London, 1965 Zbl0182.16101
  12. [12] Gasiński L., Papageorgiou N.S., Nonlinear analysis, Ser. Math. Anal. Appl., 9, Chapman&Hall/CRC, Boca Raton, 2006 Zbl1086.47001
  13. [13] Grothendieck A., Sur les applications linéaires faiblement compactes despaces du type C(K), Canad. J. Math., 1953, 5, 129–173 http://dx.doi.org/10.4153/CJM-1953-017-4 Zbl0050.10902
  14. [14] Isac G., Gowda M.S., Operators of class (S) +1, Altmans condition and the complementarity problem, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 1993, 40(1), 1–16 Zbl0804.47037
  15. [15] James I.M., Topological and Uniform Spaces, Undergrad. Texts Math., Springer, New York, 1987 Zbl0625.54001
  16. [16] Jeribi A., A nonlinear problem arising in the theory of growing cell populations, Nonlinear Anal. Real World Appl., 2002, 3(1), 85–105 http://dx.doi.org/10.1016/S1468-1218(01)00015-3 Zbl1023.35029
  17. [17] Krasnosel’skiĭ M.A., Zabreĭko P.P., Pustyl’nik E.I., Sobolevskiĭ, P.E., Integral Operators in Spaces of Summable Functions, Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics: Analysis, 1, Noordhoff, Leiden, 1976 
  18. [18] Latrach K., On a nonlinear stationary problem arising in transport theory, J. Math. Phys., 1996, 37(3), 1336–1348 http://dx.doi.org/10.1063/1.531440 Zbl0869.45009
  19. [19] Latrach K., Compactness results for transport equations and applications, Math. Models Methods Appl. Sci., 2001, 11(7), 1182–1202 http://dx.doi.org/10.1142/S021820250100129X Zbl1012.82017
  20. [20] Latrach K., Jeribi A., A nonlinear boundary value problem arising in growing cell populations, Nonlinear Anal., 1999, 36(7), 843–862 Zbl0935.35170
  21. [21] Latrach K., Taoudi M.A., Existence results for a generalized nonlinear Hammerstein equation on L 1 spaces, Nonlinear Anal., 2007, 66(10), 2325–2333 http://dx.doi.org/10.1016/j.na.2006.03.022 Zbl1128.45006
  22. [22] Latrach K., Taoudi M.A., Zeghal A., Some fixed point theorems of the Schauder and the Krasnoselskii type and application to nonlinear transport equations, J. Differential Equations, 2006, 221(1), 256–271 http://dx.doi.org/10.1016/j.jde.2005.04.010 Zbl1091.47046
  23. [23] Lebowitz J.L., Rubinow S.I., A theory for the age and generation time distribution of a microbial population, J. Math. Biol., 1974, 1(1), 17–36 http://dx.doi.org/10.1007/BF02339486 Zbl0402.92023
  24. [24] Leray J., Schauder J., Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup., 1934, 51, 45–78 Zbl60.0322.02
  25. [25] Lods B., On linear kinetic equations involving unbounded cross-sections, Math. Methods Appl. Sci., 2004, 27(9), 1049–1075 http://dx.doi.org/10.1002/mma.485 Zbl1072.37062
  26. [26] Petryshyn W.V., Structure of the fixed points sets of k-set-contractions, Arch. Rational Mech. Anal., 1971, 40(4), 312–328 http://dx.doi.org/10.1007/BF00252680 Zbl0218.47028
  27. [27] Petryshyn W.V., Fixed point theorems for various classes of 1-set-contractive and 1-ball-contractive mappings in Banach spaces, Trans. Amer. Math. Soc, 1973, 182, 323–352 Zbl0277.47033
  28. [28] Potter A.J.B., An elementary version of the Leray-Schauder theorem, J. London Math. Soc, 1972, 5(3), 414–416 http://dx.doi.org/10.1112/jlms/s2-5.3.414 Zbl0242.47037
  29. [29] Rotenberg M., Transport theory for growing cell populations, J. Theoret. Biol., 1983, 103(2), 181–199 http://dx.doi.org/10.1016/0022-5193(83)90024-3 
  30. [30] Schaefer H., Neue Existenzsätze in der Theorie nichtlinearer Integralgleichungen, Ber. Verhandl. Sächs. Akad. Wiss. Leipzig Math.-Natur. Kl., 1955, 101, #7 Zbl0066.09001
  31. [31] Schaefer H.H., Topological Vector Spaces, Macmillan, New York, 1966 
  32. [32] Showalter R.E., Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Math. Surveys Monogr., 49, American Mathematical Society, Providence, 1997 Zbl0870.35004
  33. [33] Zeidler E., Nonlinear Functional Analysis and its Applications. I, Springer, New York, 1986 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.