Nonlinear Leray-Schauder alternatives and application to nonlinear problem arising in the theory of growing cell population
Open Mathematics (2011)
- Volume: 9, Issue: 4, page 851-865
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAfif Amar. "Nonlinear Leray-Schauder alternatives and application to nonlinear problem arising in the theory of growing cell population." Open Mathematics 9.4 (2011): 851-865. <http://eudml.org/doc/269033>.
@article{AfifAmar2011,
abstract = {Motivated by a mathematical model of an age structured proliferating cell population, we state some new variants of Leray-Schauder type fixed point theorems for (ws)-compact operators. Further, we apply our results to establish some new existence and locality principles for nonlinear boundary value problem arising in the theory of growing cell population in L 1-setting. Besides, a topological structure of the set of solutions is provided.},
author = {Afif Amar},
journal = {Open Mathematics},
keywords = {Nonlinear boundary value problem; Cell population dynamics; Fixed point theorems; Regular operators; cell population dynamics; nonlinear boundary value problem},
language = {eng},
number = {4},
pages = {851-865},
title = {Nonlinear Leray-Schauder alternatives and application to nonlinear problem arising in the theory of growing cell population},
url = {http://eudml.org/doc/269033},
volume = {9},
year = {2011},
}
TY - JOUR
AU - Afif Amar
TI - Nonlinear Leray-Schauder alternatives and application to nonlinear problem arising in the theory of growing cell population
JO - Open Mathematics
PY - 2011
VL - 9
IS - 4
SP - 851
EP - 865
AB - Motivated by a mathematical model of an age structured proliferating cell population, we state some new variants of Leray-Schauder type fixed point theorems for (ws)-compact operators. Further, we apply our results to establish some new existence and locality principles for nonlinear boundary value problem arising in the theory of growing cell population in L 1-setting. Besides, a topological structure of the set of solutions is provided.
LA - eng
KW - Nonlinear boundary value problem; Cell population dynamics; Fixed point theorems; Regular operators; cell population dynamics; nonlinear boundary value problem
UR - http://eudml.org/doc/269033
ER -
References
top- [1] Agarwal R.P., O’Regan D., Liu X., A Leray-Schauder alternative for weakly-strongly sequentially continuous weakly compact maps, Fixed Point Theory Appl., 2005, 1, 1–10 http://dx.doi.org/10.1155/FPTA.2005.1 Zbl1098.47046
- [2] Ben Amar A., Jeribi A., Mnif M., On a generalization of the Schauder and Krasnosel’skii fixed points theorems on Dunford-Pettis spaces and applications, Math. Methods Appl. Sci., 2005, 28(14), 1737–1756 http://dx.doi.org/10.1002/mma.639 Zbl1186.47043
- [3] Ben Amar A., Jeribi A., Mnif M., Some fixed point theorems and application to biological model, Numer. Funct. Anal. Optim., 2008, 29(1), 1–23 http://dx.doi.org/10.1080/01630560701749482 Zbl1130.47305
- [4] Ben Amar A., Mnif M., Leray-Schauder alternatives for weakly sequentially continuous mappings and application to transport equation, Math. Methods Appl. Sci., 2010, 33(1), 80–90 Zbl1193.47056
- [5] Browder F.E., Problèmes Non-Linéaires, Séminaire de Mathématiques Supérieures, 15, Les Presses de l’Université de Montréal, Montréal, 1966 Zbl0153.17302
- [6] Boulanouar M., A mathematical study in the theory of dynamic population., J. Math. Anal. Appl., 2001, 255(1), 230–259 http://dx.doi.org/10.1006/jmaa.2000.7237 Zbl0979.92013
- [7] Diestel J., A survey of results related to the Dunford-Pettis property, In: Conference on Integration, Topology, and Geometry in Linear Spaces, Chapel Hill, 1979, Contemp. Math., 2, American Mathematical Society, Providence, 1980, 15–60
- [8] Dodds P., Fremlin D.H., Compact operator in Banach lattices, Israel J. Math., 1979, 34(4), 287–320 http://dx.doi.org/10.1007/BF02760610 Zbl0438.47042
- [9] Dunford N., Pettis B.J., Linear operations on summable functions, Trans. Amer. Math. Soc, 1940, 47, 323–392 http://dx.doi.org/10.1090/S0002-9947-1940-0002020-4 Zbl0023.32902
- [10] Dunford N., Schwartz J.T., Linear Operators. I. General Theory, Pure Appl. Math., 7, Interscience, London, 1958 Zbl0084.10402
- [11] Edwards R.E., Functional Analysis, Theory and Applications, Holt, Reinhart and Winston, New York-Toronto-London, 1965 Zbl0182.16101
- [12] Gasiński L., Papageorgiou N.S., Nonlinear analysis, Ser. Math. Anal. Appl., 9, Chapman&Hall/CRC, Boca Raton, 2006 Zbl1086.47001
- [13] Grothendieck A., Sur les applications linéaires faiblement compactes despaces du type C(K), Canad. J. Math., 1953, 5, 129–173 http://dx.doi.org/10.4153/CJM-1953-017-4 Zbl0050.10902
- [14] Isac G., Gowda M.S., Operators of class (S) +1, Altmans condition and the complementarity problem, J. Fac. Sci. Univ. Tokyo Sect. IA, Math., 1993, 40(1), 1–16 Zbl0804.47037
- [15] James I.M., Topological and Uniform Spaces, Undergrad. Texts Math., Springer, New York, 1987 Zbl0625.54001
- [16] Jeribi A., A nonlinear problem arising in the theory of growing cell populations, Nonlinear Anal. Real World Appl., 2002, 3(1), 85–105 http://dx.doi.org/10.1016/S1468-1218(01)00015-3 Zbl1023.35029
- [17] Krasnosel’skiĭ M.A., Zabreĭko P.P., Pustyl’nik E.I., Sobolevskiĭ, P.E., Integral Operators in Spaces of Summable Functions, Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics: Analysis, 1, Noordhoff, Leiden, 1976
- [18] Latrach K., On a nonlinear stationary problem arising in transport theory, J. Math. Phys., 1996, 37(3), 1336–1348 http://dx.doi.org/10.1063/1.531440 Zbl0869.45009
- [19] Latrach K., Compactness results for transport equations and applications, Math. Models Methods Appl. Sci., 2001, 11(7), 1182–1202 http://dx.doi.org/10.1142/S021820250100129X Zbl1012.82017
- [20] Latrach K., Jeribi A., A nonlinear boundary value problem arising in growing cell populations, Nonlinear Anal., 1999, 36(7), 843–862 Zbl0935.35170
- [21] Latrach K., Taoudi M.A., Existence results for a generalized nonlinear Hammerstein equation on L 1 spaces, Nonlinear Anal., 2007, 66(10), 2325–2333 http://dx.doi.org/10.1016/j.na.2006.03.022 Zbl1128.45006
- [22] Latrach K., Taoudi M.A., Zeghal A., Some fixed point theorems of the Schauder and the Krasnoselskii type and application to nonlinear transport equations, J. Differential Equations, 2006, 221(1), 256–271 http://dx.doi.org/10.1016/j.jde.2005.04.010 Zbl1091.47046
- [23] Lebowitz J.L., Rubinow S.I., A theory for the age and generation time distribution of a microbial population, J. Math. Biol., 1974, 1(1), 17–36 http://dx.doi.org/10.1007/BF02339486 Zbl0402.92023
- [24] Leray J., Schauder J., Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup., 1934, 51, 45–78 Zbl60.0322.02
- [25] Lods B., On linear kinetic equations involving unbounded cross-sections, Math. Methods Appl. Sci., 2004, 27(9), 1049–1075 http://dx.doi.org/10.1002/mma.485 Zbl1072.37062
- [26] Petryshyn W.V., Structure of the fixed points sets of k-set-contractions, Arch. Rational Mech. Anal., 1971, 40(4), 312–328 http://dx.doi.org/10.1007/BF00252680 Zbl0218.47028
- [27] Petryshyn W.V., Fixed point theorems for various classes of 1-set-contractive and 1-ball-contractive mappings in Banach spaces, Trans. Amer. Math. Soc, 1973, 182, 323–352 Zbl0277.47033
- [28] Potter A.J.B., An elementary version of the Leray-Schauder theorem, J. London Math. Soc, 1972, 5(3), 414–416 http://dx.doi.org/10.1112/jlms/s2-5.3.414 Zbl0242.47037
- [29] Rotenberg M., Transport theory for growing cell populations, J. Theoret. Biol., 1983, 103(2), 181–199 http://dx.doi.org/10.1016/0022-5193(83)90024-3
- [30] Schaefer H., Neue Existenzsätze in der Theorie nichtlinearer Integralgleichungen, Ber. Verhandl. Sächs. Akad. Wiss. Leipzig Math.-Natur. Kl., 1955, 101, #7 Zbl0066.09001
- [31] Schaefer H.H., Topological Vector Spaces, Macmillan, New York, 1966
- [32] Showalter R.E., Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Math. Surveys Monogr., 49, American Mathematical Society, Providence, 1997 Zbl0870.35004
- [33] Zeidler E., Nonlinear Functional Analysis and its Applications. I, Springer, New York, 1986
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.