Twisted gamma filtration and algebras with orthogonal involution
Open Mathematics (2014)
- Volume: 12, Issue: 3, page 421-428
 - ISSN: 2391-5455
 
Access Full Article
topAbstract
topHow to cite
topCaroline Junkins. "Twisted gamma filtration and algebras with orthogonal involution." Open Mathematics 12.3 (2014): 421-428. <http://eudml.org/doc/269040>.
@article{CarolineJunkins2014,
	abstract = {For the Grothendieck group of a split simple linear algebraic group, the twisted γ-filtration provides a useful tool for constructing torsion elements in -rings of twisted flag varieties. In this paper, we construct a non-trivial torsion element in the γ-ring of a complete flag variety twisted by means of a PGO-torsor. This generalizes the construction in the HSpin case previously obtained by Zainoulline.},
	author = {Caroline Junkins},
	journal = {Open Mathematics},
	keywords = {Linear algebraic group; Tits algebra; Gamma filtration; Grothendieck group; Torsion; Algebras with orthogonal involution; linear algebraic group; gamma filtration; torsion; algebras with orthogonal involution},
	language = {eng},
	number = {3},
	pages = {421-428},
	title = {Twisted gamma filtration and algebras with orthogonal involution},
	url = {http://eudml.org/doc/269040},
	volume = {12},
	year = {2014},
}
TY  - JOUR
AU  - Caroline Junkins
TI  - Twisted gamma filtration and algebras with orthogonal involution
JO  - Open Mathematics
PY  - 2014
VL  - 12
IS  - 3
SP  - 421
EP  - 428
AB  - For the Grothendieck group of a split simple linear algebraic group, the twisted γ-filtration provides a useful tool for constructing torsion elements in -rings of twisted flag varieties. In this paper, we construct a non-trivial torsion element in the γ-ring of a complete flag variety twisted by means of a PGO-torsor. This generalizes the construction in the HSpin case previously obtained by Zainoulline.
LA  - eng
KW  - Linear algebraic group; Tits algebra; Gamma filtration; Grothendieck group; Torsion; Algebras with orthogonal involution; linear algebraic group; gamma filtration; torsion; algebras with orthogonal involution
UR  - http://eudml.org/doc/269040
ER  - 
References
top- [1] Baek S., On the torsion of Chow groups of Severi-Brauer varieties, preprint available at http://arxiv.org/abs/1206.2704 Zbl1330.14005
 - [2] Baek S., Zainoulline K., Zhong C., On the torsion of Chow groups of twisted Spin-flags, preprint available at http://arxiv.org/abs/1204.4663v1 Zbl1310.13010
 - [3] Dejaiffe I., Somme orthogonale d’algèbres à involution et algèbre de Clifford, Comm. Algebra, 1998, 26(5), 1589–1612 http://dx.doi.org/10.1080/00927879808826224
 - [4] Fulton W., Intersection Theory, 2nd ed., Ergeb. Math. Grenzgeb., 2, Springer, Berlin, 1998 http://dx.doi.org/10.1007/978-1-4612-1700-8 Zbl0885.14002
 - [5] Fulton W., Lang S., Riemann-Roch Algebra, Grundlehren Math. Wiss., 277,Springer, New York, 1985 http://dx.doi.org/10.1007/978-1-4757-1858-4
 - [6] Garibaldi S., Zainoulline K., The γ-filtration and the Rost invariant, J. Reine Angew. Math. (in press), DOI: 10.1515/crelle-2012-0114 Zbl06374641
 - [7] Gille S., Zainoulline K., Equivariant pretheories and invariants of torsors, Transform. Groups, 2012, 17(2), 471–498 http://dx.doi.org/10.1007/s00031-012-9178-5 Zbl1291.14012
 - [8] Grothendieck A., Théorie des Intersections et Théorème de Riemann-Roch, Lecture Notes in Math., 225, Springer, Berlin, 1971
 - [9] Junkins C., The J-invariant and Tits algebras for groups of inner type E6, Manuscripta Math., 2013, 140(1–2), 249–261 http://dx.doi.org/10.1007/s00229-012-0541-6 Zbl06138670
 - [10] Karpenko N.A., Codimension 2 cycles on Severi-Brauer varieties, K-Theory, 1998, 13(4), 305–330 http://dx.doi.org/10.1023/A:1007705720373 Zbl0896.19002
 - [11] Karpenko N.A., Merkurjev A.S., Chow groups of projective quadrics, St. Petersburg Math. J., 1991, 2(3), 655–671 Zbl0754.14006
 - [12] Knus M.-A., Merkurjev A., Rost M., Tignol J.-P., The Book of Involutions, Amer. Math. Soc. Colloq. Publ., 44, American Mathematical Society, Providence, 1998 Zbl0955.16001
 - [13] Panin I.A., On the algebraic K-theory of twisted flag varieties, K-Theory, 1994, 8(6), 541–585 http://dx.doi.org/10.1007/BF00961020 Zbl0854.19002
 - [14] Peyre E., Galois cohomology in degree three and homogeneous varieties, K-Theory, 1998, 15(2), 99–145 http://dx.doi.org/10.1023/A:1007792509297 Zbl0931.12007
 - [15] Quéguiner-Mathieu A., Semenov N., Zainoulline K., The J-invariant, Tits algebras and triality, J. Pure Appl. Algebra, 2012, 216(12), 2614–2628 http://dx.doi.org/10.1016/j.jpaa.2012.03.037 Zbl1286.20061
 - [16] Steinberg R., On a theorem of Pittie, Topology, 1975, 14(2), 173–177 http://dx.doi.org/10.1016/0040-9383(75)90025-7
 - [17] Tits J., Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math., 1971, 247, 196–220 Zbl0227.20015
 - [18] Zainoulline K., Twisted gamma filtration of a linear algebraic group, Compos. Math., 2012, 148(5), 1645–1654 http://dx.doi.org/10.1112/S0010437X11007494 Zbl1279.14011
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.