Twisted gamma filtration and algebras with orthogonal involution

Caroline Junkins

Open Mathematics (2014)

  • Volume: 12, Issue: 3, page 421-428
  • ISSN: 2391-5455

Abstract

top
For the Grothendieck group of a split simple linear algebraic group, the twisted γ-filtration provides a useful tool for constructing torsion elements in -rings of twisted flag varieties. In this paper, we construct a non-trivial torsion element in the γ-ring of a complete flag variety twisted by means of a PGO-torsor. This generalizes the construction in the HSpin case previously obtained by Zainoulline.

How to cite

top

Caroline Junkins. "Twisted gamma filtration and algebras with orthogonal involution." Open Mathematics 12.3 (2014): 421-428. <http://eudml.org/doc/269040>.

@article{CarolineJunkins2014,
abstract = {For the Grothendieck group of a split simple linear algebraic group, the twisted γ-filtration provides a useful tool for constructing torsion elements in -rings of twisted flag varieties. In this paper, we construct a non-trivial torsion element in the γ-ring of a complete flag variety twisted by means of a PGO-torsor. This generalizes the construction in the HSpin case previously obtained by Zainoulline.},
author = {Caroline Junkins},
journal = {Open Mathematics},
keywords = {Linear algebraic group; Tits algebra; Gamma filtration; Grothendieck group; Torsion; Algebras with orthogonal involution; linear algebraic group; gamma filtration; torsion; algebras with orthogonal involution},
language = {eng},
number = {3},
pages = {421-428},
title = {Twisted gamma filtration and algebras with orthogonal involution},
url = {http://eudml.org/doc/269040},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Caroline Junkins
TI - Twisted gamma filtration and algebras with orthogonal involution
JO - Open Mathematics
PY - 2014
VL - 12
IS - 3
SP - 421
EP - 428
AB - For the Grothendieck group of a split simple linear algebraic group, the twisted γ-filtration provides a useful tool for constructing torsion elements in -rings of twisted flag varieties. In this paper, we construct a non-trivial torsion element in the γ-ring of a complete flag variety twisted by means of a PGO-torsor. This generalizes the construction in the HSpin case previously obtained by Zainoulline.
LA - eng
KW - Linear algebraic group; Tits algebra; Gamma filtration; Grothendieck group; Torsion; Algebras with orthogonal involution; linear algebraic group; gamma filtration; torsion; algebras with orthogonal involution
UR - http://eudml.org/doc/269040
ER -

References

top
  1. [1] Baek S., On the torsion of Chow groups of Severi-Brauer varieties, preprint available at http://arxiv.org/abs/1206.2704 Zbl1330.14005
  2. [2] Baek S., Zainoulline K., Zhong C., On the torsion of Chow groups of twisted Spin-flags, preprint available at http://arxiv.org/abs/1204.4663v1 Zbl1310.13010
  3. [3] Dejaiffe I., Somme orthogonale d’algèbres à involution et algèbre de Clifford, Comm. Algebra, 1998, 26(5), 1589–1612 http://dx.doi.org/10.1080/00927879808826224 
  4. [4] Fulton W., Intersection Theory, 2nd ed., Ergeb. Math. Grenzgeb., 2, Springer, Berlin, 1998 http://dx.doi.org/10.1007/978-1-4612-1700-8 Zbl0885.14002
  5. [5] Fulton W., Lang S., Riemann-Roch Algebra, Grundlehren Math. Wiss., 277,Springer, New York, 1985 http://dx.doi.org/10.1007/978-1-4757-1858-4 
  6. [6] Garibaldi S., Zainoulline K., The γ-filtration and the Rost invariant, J. Reine Angew. Math. (in press), DOI: 10.1515/crelle-2012-0114 Zbl06374641
  7. [7] Gille S., Zainoulline K., Equivariant pretheories and invariants of torsors, Transform. Groups, 2012, 17(2), 471–498 http://dx.doi.org/10.1007/s00031-012-9178-5 Zbl1291.14012
  8. [8] Grothendieck A., Théorie des Intersections et Théorème de Riemann-Roch, Lecture Notes in Math., 225, Springer, Berlin, 1971 
  9. [9] Junkins C., The J-invariant and Tits algebras for groups of inner type E6, Manuscripta Math., 2013, 140(1–2), 249–261 http://dx.doi.org/10.1007/s00229-012-0541-6 Zbl06138670
  10. [10] Karpenko N.A., Codimension 2 cycles on Severi-Brauer varieties, K-Theory, 1998, 13(4), 305–330 http://dx.doi.org/10.1023/A:1007705720373 Zbl0896.19002
  11. [11] Karpenko N.A., Merkurjev A.S., Chow groups of projective quadrics, St. Petersburg Math. J., 1991, 2(3), 655–671 Zbl0754.14006
  12. [12] Knus M.-A., Merkurjev A., Rost M., Tignol J.-P., The Book of Involutions, Amer. Math. Soc. Colloq. Publ., 44, American Mathematical Society, Providence, 1998 Zbl0955.16001
  13. [13] Panin I.A., On the algebraic K-theory of twisted flag varieties, K-Theory, 1994, 8(6), 541–585 http://dx.doi.org/10.1007/BF00961020 Zbl0854.19002
  14. [14] Peyre E., Galois cohomology in degree three and homogeneous varieties, K-Theory, 1998, 15(2), 99–145 http://dx.doi.org/10.1023/A:1007792509297 Zbl0931.12007
  15. [15] Quéguiner-Mathieu A., Semenov N., Zainoulline K., The J-invariant, Tits algebras and triality, J. Pure Appl. Algebra, 2012, 216(12), 2614–2628 http://dx.doi.org/10.1016/j.jpaa.2012.03.037 Zbl1286.20061
  16. [16] Steinberg R., On a theorem of Pittie, Topology, 1975, 14(2), 173–177 http://dx.doi.org/10.1016/0040-9383(75)90025-7 
  17. [17] Tits J., Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math., 1971, 247, 196–220 Zbl0227.20015
  18. [18] Zainoulline K., Twisted gamma filtration of a linear algebraic group, Compos. Math., 2012, 148(5), 1645–1654 http://dx.doi.org/10.1112/S0010437X11007494 Zbl1279.14011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.