A note on tilting sequences

Clezio Braga; Flávio Coelho

Open Mathematics (2008)

  • Volume: 6, Issue: 3, page 364-371
  • ISSN: 2391-5455

Abstract

top
We discuss the existence of tilting modules which are direct limits of finitely generated tilting modules over tilted algebras.

How to cite

top

Clezio Braga, and Flávio Coelho. "A note on tilting sequences." Open Mathematics 6.3 (2008): 364-371. <http://eudml.org/doc/269057>.

@article{ClezioBraga2008,
abstract = {We discuss the existence of tilting modules which are direct limits of finitely generated tilting modules over tilted algebras.},
author = {Clezio Braga, Flávio Coelho},
journal = {Open Mathematics},
keywords = {tilting modules; direct limits; tilted algebras; connected hereditary algebras; connected components; Auslander-Reiten quivers; indecomposable summands},
language = {eng},
number = {3},
pages = {364-371},
title = {A note on tilting sequences},
url = {http://eudml.org/doc/269057},
volume = {6},
year = {2008},
}

TY - JOUR
AU - Clezio Braga
AU - Flávio Coelho
TI - A note on tilting sequences
JO - Open Mathematics
PY - 2008
VL - 6
IS - 3
SP - 364
EP - 371
AB - We discuss the existence of tilting modules which are direct limits of finitely generated tilting modules over tilted algebras.
LA - eng
KW - tilting modules; direct limits; tilted algebras; connected hereditary algebras; connected components; Auslander-Reiten quivers; indecomposable summands
UR - http://eudml.org/doc/269057
ER -

References

top
  1. [1] Angeleri-Hügel L., Coelho F.U., Infinitely generated tilting modules of finite projective dimension, Forum Math., 2001, 13, 239–250 http://dx.doi.org/10.1515/form.2001.006 
  2. [2] Assem I., Simson D., Skowroński A., Elements of the representation theory of associative algebras, London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge, 2006 Zbl1092.16001
  3. [3] Auslander M., Platzeck M.I., Reiten I., Coxeter functors without diagrams, Trans. Amer. Math. Soc., 1979, 250, 1–46 http://dx.doi.org/10.2307/1998978 Zbl0421.16016
  4. [4] Auslander M., Reiten I., Smalø S., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, Cambridge, 1995 Zbl0834.16001
  5. [5] Bazzoni S., Stovícek J., All tilting modules are of finite type, Proc. Amer. Math. Soc., to appear Zbl1132.16008
  6. [6] Braga C., Coelho F.U., Limits of tilting modules, preprint Zbl1228.16009
  7. [7] Brenner S., Butler M.C.R., Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, Proc. Second Internat. Conf. Carleton Univ. (1979 Ottawa Canada), Lecture Notes in Math. 832, Springer, Berlin-New York, 1980, 103–169 Zbl0446.16031
  8. [8] Buan A., Solberg O., Limits of pure-injective cotilting modules, Algebr. Represent. Theory, 2005, 8, 621–634 http://dx.doi.org/10.1007/s10468-005-0341-8 Zbl1099.16003
  9. [9] Eklof P., Trlifaj J., How to make Ext vanish, Bull. London Math. Soc., 2001, 33, 41–51 http://dx.doi.org/10.1112/blms/33.1.41 Zbl1030.16004
  10. [10] Happel D., Ringel C.M., Tilted algebras, Trans. Amer. Math. Soc., 1982, 274, 399–443 http://dx.doi.org/10.2307/1999116 Zbl0503.16024
  11. [11] Liu S., Tilted algebras and generalized standard Auslander-Reiten components, Arch. Math., 1993, 61, 12–19 http://dx.doi.org/10.1007/BF01258050 Zbl0809.16015
  12. [12] Skowroński A., Generalized standard Auslander-Reiten components without oriented cycles, Osaka J. Math., 1993, 30, 515–527 Zbl0818.16017
  13. [13] Skowroński A., Minimal representation-infinite Artin algebras, Math. Proc. Cambridge Philos. Soc., 1994, 116, 229–243 http://dx.doi.org/10.1017/S0305004100072546 Zbl0822.16010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.