A note on tilting sequences
Open Mathematics (2008)
- Volume: 6, Issue: 3, page 364-371
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topClezio Braga, and Flávio Coelho. "A note on tilting sequences." Open Mathematics 6.3 (2008): 364-371. <http://eudml.org/doc/269057>.
@article{ClezioBraga2008,
abstract = {We discuss the existence of tilting modules which are direct limits of finitely generated tilting modules over tilted algebras.},
author = {Clezio Braga, Flávio Coelho},
journal = {Open Mathematics},
keywords = {tilting modules; direct limits; tilted algebras; connected hereditary algebras; connected components; Auslander-Reiten quivers; indecomposable summands},
language = {eng},
number = {3},
pages = {364-371},
title = {A note on tilting sequences},
url = {http://eudml.org/doc/269057},
volume = {6},
year = {2008},
}
TY - JOUR
AU - Clezio Braga
AU - Flávio Coelho
TI - A note on tilting sequences
JO - Open Mathematics
PY - 2008
VL - 6
IS - 3
SP - 364
EP - 371
AB - We discuss the existence of tilting modules which are direct limits of finitely generated tilting modules over tilted algebras.
LA - eng
KW - tilting modules; direct limits; tilted algebras; connected hereditary algebras; connected components; Auslander-Reiten quivers; indecomposable summands
UR - http://eudml.org/doc/269057
ER -
References
top- [1] Angeleri-Hügel L., Coelho F.U., Infinitely generated tilting modules of finite projective dimension, Forum Math., 2001, 13, 239–250 http://dx.doi.org/10.1515/form.2001.006
- [2] Assem I., Simson D., Skowroński A., Elements of the representation theory of associative algebras, London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge, 2006 Zbl1092.16001
- [3] Auslander M., Platzeck M.I., Reiten I., Coxeter functors without diagrams, Trans. Amer. Math. Soc., 1979, 250, 1–46 http://dx.doi.org/10.2307/1998978 Zbl0421.16016
- [4] Auslander M., Reiten I., Smalø S., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, Cambridge, 1995 Zbl0834.16001
- [5] Bazzoni S., Stovícek J., All tilting modules are of finite type, Proc. Amer. Math. Soc., to appear Zbl1132.16008
- [6] Braga C., Coelho F.U., Limits of tilting modules, preprint Zbl1228.16009
- [7] Brenner S., Butler M.C.R., Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, Proc. Second Internat. Conf. Carleton Univ. (1979 Ottawa Canada), Lecture Notes in Math. 832, Springer, Berlin-New York, 1980, 103–169 Zbl0446.16031
- [8] Buan A., Solberg O., Limits of pure-injective cotilting modules, Algebr. Represent. Theory, 2005, 8, 621–634 http://dx.doi.org/10.1007/s10468-005-0341-8 Zbl1099.16003
- [9] Eklof P., Trlifaj J., How to make Ext vanish, Bull. London Math. Soc., 2001, 33, 41–51 http://dx.doi.org/10.1112/blms/33.1.41 Zbl1030.16004
- [10] Happel D., Ringel C.M., Tilted algebras, Trans. Amer. Math. Soc., 1982, 274, 399–443 http://dx.doi.org/10.2307/1999116 Zbl0503.16024
- [11] Liu S., Tilted algebras and generalized standard Auslander-Reiten components, Arch. Math., 1993, 61, 12–19 http://dx.doi.org/10.1007/BF01258050 Zbl0809.16015
- [12] Skowroński A., Generalized standard Auslander-Reiten components without oriented cycles, Osaka J. Math., 1993, 30, 515–527 Zbl0818.16017
- [13] Skowroński A., Minimal representation-infinite Artin algebras, Math. Proc. Cambridge Philos. Soc., 1994, 116, 229–243 http://dx.doi.org/10.1017/S0305004100072546 Zbl0822.16010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.