3-dimensional sundials

Enrico Carlini; Maria Catalisano; Anthony Geramita

Open Mathematics (2011)

  • Volume: 9, Issue: 5, page 949-971
  • ISSN: 2391-5455

Abstract

top
R. Hartshorne and A. Hirschowitz proved that a generic collection of lines on ℙn, n≥3, has bipolynomial Hilbert function. We extend this result to a specialization of the collection of generic lines, by considering a union of lines and 3-dimensional sundials (i.e., a union of schemes obtained by degenerating pairs of skew lines).

How to cite

top

Enrico Carlini, Maria Catalisano, and Anthony Geramita. "3-dimensional sundials." Open Mathematics 9.5 (2011): 949-971. <http://eudml.org/doc/269063>.

@article{EnricoCarlini2011,
abstract = {R. Hartshorne and A. Hirschowitz proved that a generic collection of lines on ℙn, n≥3, has bipolynomial Hilbert function. We extend this result to a specialization of the collection of generic lines, by considering a union of lines and 3-dimensional sundials (i.e., a union of schemes obtained by degenerating pairs of skew lines).},
author = {Enrico Carlini, Maria Catalisano, Anthony Geramita},
journal = {Open Mathematics},
keywords = {Hilbert functions; Subspace arrangements; Configuration of linear spaces; Degenerations; Castelnuovo’s sequence; Specializations; subspace arrangements; subspace arrangements; configuration of linear spaces; degenerations; Castelnuovo's sequence; specializations},
language = {eng},
number = {5},
pages = {949-971},
title = {3-dimensional sundials},
url = {http://eudml.org/doc/269063},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Enrico Carlini
AU - Maria Catalisano
AU - Anthony Geramita
TI - 3-dimensional sundials
JO - Open Mathematics
PY - 2011
VL - 9
IS - 5
SP - 949
EP - 971
AB - R. Hartshorne and A. Hirschowitz proved that a generic collection of lines on ℙn, n≥3, has bipolynomial Hilbert function. We extend this result to a specialization of the collection of generic lines, by considering a union of lines and 3-dimensional sundials (i.e., a union of schemes obtained by degenerating pairs of skew lines).
LA - eng
KW - Hilbert functions; Subspace arrangements; Configuration of linear spaces; Degenerations; Castelnuovo’s sequence; Specializations; subspace arrangements; subspace arrangements; configuration of linear spaces; degenerations; Castelnuovo's sequence; specializations
UR - http://eudml.org/doc/269063
ER -

References

top
  1. [1] Abo H., Ottaviani G., Peterson C., Induction for secant varieties of Segre varieties, Trans. Amer. Math. Soc., 2009, 361(2), 767–792 http://dx.doi.org/10.1090/S0002-9947-08-04725-9 Zbl1170.14036
  2. [2] Alexander J., Hirschowitz A., Polynomial interpolation in several variables, J. Algebraic Geom., 1995, 4(2), 201–222 Zbl0829.14002
  3. [3] Bürgisser P., Clausen M., Shokrollahi M.A., Algebraic Complexity Theory, Grundlehren Math. Wiss., 315, Springer, Berlin, 1997 Zbl1087.68568
  4. [4] Carlini E., Catalisano M.V., Geramita A.V., Bipolynomial Hilbert functions, J. Algebra, 2010, 324(4), 758–781 http://dx.doi.org/10.1016/j.jalgebra.2010.04.008 Zbl1197.13016
  5. [5] Carlini E., Catalisano M.V., Geramita A.V., Reduced and non-reduced linear spaces: lines and points (in preparation) Zbl06582855
  6. [6] Carlini E., Chiantini L., Geramita A.V., Complete intersections on general hypersurfaces. Michigan Math. J., 2008, 57, 121–136 http://dx.doi.org/10.1307/mmj/1220879400 Zbl1181.14057
  7. [7] Catalisano M.V., Geramita A.V., Gimigliano A., Ranks of tensors, secant varieties of Segre varieties and fat points, Linear Algebra Appl., 2002, 355, 263–285 http://dx.doi.org/10.1016/S0024-3795(02)00352-X Zbl1059.14061
  8. [8] Catalisano M.V., Geramita A.V., Gimigliano A., Erratum to: “Ranks of tensors, secant varieties of Segre varieties and fat points” [Linear Algebra Appl. 355 (2002) 263–285], Linear Algebra Appl., 2003, 367, 347–348 http://dx.doi.org/10.1016/S0024-3795(03)00455-5 Zbl1059.14061
  9. [9] Catalisano M.V., Geramita A.V., Gimigliano A., Higher secant varieties of Segre-Veronese varieties, In: Projective Varieties with Unexpected Properties, Walter de Gruyter, Berlin, 2005, 81–107 Zbl1102.14037
  10. [10] Catalisano M.V., Geramita A.V., Gimigliano A., Secant varieties of Grassmann varieties, Proc. Amer. Math. Soc., 2005, 133(3), 633–642 http://dx.doi.org/10.1090/S0002-9939-04-07632-4 Zbl1077.14065
  11. [11] Catalisano M.V., Geramita A.V., Gimigliano A., Segre-Veronese embeddings of ℙ1×ℙ1×ℙ1 and their secant varieties, Collect. Math., 2007, 58(1), 1–24 
  12. [12] Catalisano M.V., Geramita A.V., Gimigliano A., Secant varieties of ℙ1 ×…×ℙ1 (n-times) are not defective for n ≥ 5, J. Algebraic Geom., 2011, 20(2), 295–327 Zbl1217.14039
  13. [13] Comon P., Mourrain B., Decomposition of quantics in sums of powers of linear forms, Signal Process., 1996, 53(2), 93–107 http://dx.doi.org/10.1016/0165-1684(96)00079-5 Zbl0875.94079
  14. [14] CoCoA: a system for making Computations in Commutative Algebra, available at http://cocoa.dima.unige.it 
  15. [15] Hartshorne R., Hirschowitz A., Droites en position générale dans l’espace projectif. In: Algebraic Geometry, La Rábida, 1981, Lecture Notes in Math., 961, Springer, Berlin, 1982, 169–188 http://dx.doi.org/10.1007/BFb0071282 Zbl0555.14011
  16. [16] Pistone G., Riccomagno E., Wynn H.P., Algebraic Statistics, Monogr. Statist. Appl. Probab., 89, Chapman & Hall/CRC, Boca Raton, 2001 Zbl0960.62003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.