3-dimensional sundials
Enrico Carlini; Maria Catalisano; Anthony Geramita
Open Mathematics (2011)
- Volume: 9, Issue: 5, page 949-971
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topEnrico Carlini, Maria Catalisano, and Anthony Geramita. "3-dimensional sundials." Open Mathematics 9.5 (2011): 949-971. <http://eudml.org/doc/269063>.
@article{EnricoCarlini2011,
abstract = {R. Hartshorne and A. Hirschowitz proved that a generic collection of lines on ℙn, n≥3, has bipolynomial Hilbert function. We extend this result to a specialization of the collection of generic lines, by considering a union of lines and 3-dimensional sundials (i.e., a union of schemes obtained by degenerating pairs of skew lines).},
author = {Enrico Carlini, Maria Catalisano, Anthony Geramita},
journal = {Open Mathematics},
keywords = {Hilbert functions; Subspace arrangements; Configuration of linear spaces; Degenerations; Castelnuovo’s sequence; Specializations; subspace arrangements; subspace arrangements; configuration of linear spaces; degenerations; Castelnuovo's sequence; specializations},
language = {eng},
number = {5},
pages = {949-971},
title = {3-dimensional sundials},
url = {http://eudml.org/doc/269063},
volume = {9},
year = {2011},
}
TY - JOUR
AU - Enrico Carlini
AU - Maria Catalisano
AU - Anthony Geramita
TI - 3-dimensional sundials
JO - Open Mathematics
PY - 2011
VL - 9
IS - 5
SP - 949
EP - 971
AB - R. Hartshorne and A. Hirschowitz proved that a generic collection of lines on ℙn, n≥3, has bipolynomial Hilbert function. We extend this result to a specialization of the collection of generic lines, by considering a union of lines and 3-dimensional sundials (i.e., a union of schemes obtained by degenerating pairs of skew lines).
LA - eng
KW - Hilbert functions; Subspace arrangements; Configuration of linear spaces; Degenerations; Castelnuovo’s sequence; Specializations; subspace arrangements; subspace arrangements; configuration of linear spaces; degenerations; Castelnuovo's sequence; specializations
UR - http://eudml.org/doc/269063
ER -
References
top- [1] Abo H., Ottaviani G., Peterson C., Induction for secant varieties of Segre varieties, Trans. Amer. Math. Soc., 2009, 361(2), 767–792 http://dx.doi.org/10.1090/S0002-9947-08-04725-9 Zbl1170.14036
- [2] Alexander J., Hirschowitz A., Polynomial interpolation in several variables, J. Algebraic Geom., 1995, 4(2), 201–222 Zbl0829.14002
- [3] Bürgisser P., Clausen M., Shokrollahi M.A., Algebraic Complexity Theory, Grundlehren Math. Wiss., 315, Springer, Berlin, 1997 Zbl1087.68568
- [4] Carlini E., Catalisano M.V., Geramita A.V., Bipolynomial Hilbert functions, J. Algebra, 2010, 324(4), 758–781 http://dx.doi.org/10.1016/j.jalgebra.2010.04.008 Zbl1197.13016
- [5] Carlini E., Catalisano M.V., Geramita A.V., Reduced and non-reduced linear spaces: lines and points (in preparation) Zbl06582855
- [6] Carlini E., Chiantini L., Geramita A.V., Complete intersections on general hypersurfaces. Michigan Math. J., 2008, 57, 121–136 http://dx.doi.org/10.1307/mmj/1220879400 Zbl1181.14057
- [7] Catalisano M.V., Geramita A.V., Gimigliano A., Ranks of tensors, secant varieties of Segre varieties and fat points, Linear Algebra Appl., 2002, 355, 263–285 http://dx.doi.org/10.1016/S0024-3795(02)00352-X Zbl1059.14061
- [8] Catalisano M.V., Geramita A.V., Gimigliano A., Erratum to: “Ranks of tensors, secant varieties of Segre varieties and fat points” [Linear Algebra Appl. 355 (2002) 263–285], Linear Algebra Appl., 2003, 367, 347–348 http://dx.doi.org/10.1016/S0024-3795(03)00455-5 Zbl1059.14061
- [9] Catalisano M.V., Geramita A.V., Gimigliano A., Higher secant varieties of Segre-Veronese varieties, In: Projective Varieties with Unexpected Properties, Walter de Gruyter, Berlin, 2005, 81–107 Zbl1102.14037
- [10] Catalisano M.V., Geramita A.V., Gimigliano A., Secant varieties of Grassmann varieties, Proc. Amer. Math. Soc., 2005, 133(3), 633–642 http://dx.doi.org/10.1090/S0002-9939-04-07632-4 Zbl1077.14065
- [11] Catalisano M.V., Geramita A.V., Gimigliano A., Segre-Veronese embeddings of ℙ1×ℙ1×ℙ1 and their secant varieties, Collect. Math., 2007, 58(1), 1–24
- [12] Catalisano M.V., Geramita A.V., Gimigliano A., Secant varieties of ℙ1 ×…×ℙ1 (n-times) are not defective for n ≥ 5, J. Algebraic Geom., 2011, 20(2), 295–327 Zbl1217.14039
- [13] Comon P., Mourrain B., Decomposition of quantics in sums of powers of linear forms, Signal Process., 1996, 53(2), 93–107 http://dx.doi.org/10.1016/0165-1684(96)00079-5 Zbl0875.94079
- [14] CoCoA: a system for making Computations in Commutative Algebra, available at http://cocoa.dima.unige.it
- [15] Hartshorne R., Hirschowitz A., Droites en position générale dans l’espace projectif. In: Algebraic Geometry, La Rábida, 1981, Lecture Notes in Math., 961, Springer, Berlin, 1982, 169–188 http://dx.doi.org/10.1007/BFb0071282 Zbl0555.14011
- [16] Pistone G., Riccomagno E., Wynn H.P., Algebraic Statistics, Monogr. Statist. Appl. Probab., 89, Chapman & Hall/CRC, Boca Raton, 2001 Zbl0960.62003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.