A Sobolev gradient method for treating the steady-state incompressible Navier-Stokes equations

Robert Renka

Open Mathematics (2013)

  • Volume: 11, Issue: 4, page 630-641
  • ISSN: 2391-5455

Abstract

top
The velocity-vorticity-pressure formulation of the steady-state incompressible Navier-Stokes equations in two dimensions is cast as a nonlinear least squares problem in which the functional is a weighted sum of squared residuals. A finite element discretization of the functional is minimized by a trust-region method in which the trustregion radius is defined by a Sobolev norm and the trust-region subproblems are solved by a dogleg method. Numerical test results show the method to be effective.

How to cite

top

Robert Renka. "A Sobolev gradient method for treating the steady-state incompressible Navier-Stokes equations." Open Mathematics 11.4 (2013): 630-641. <http://eudml.org/doc/269068>.

@article{RobertRenka2013,
abstract = {The velocity-vorticity-pressure formulation of the steady-state incompressible Navier-Stokes equations in two dimensions is cast as a nonlinear least squares problem in which the functional is a weighted sum of squared residuals. A finite element discretization of the functional is minimized by a trust-region method in which the trustregion radius is defined by a Sobolev norm and the trust-region subproblems are solved by a dogleg method. Numerical test results show the method to be effective.},
author = {Robert Renka},
journal = {Open Mathematics},
keywords = {Finite element method; Least squares; Navier-Stokes; Sobolev gradient; Trust region; finite element method; least squares; trust region},
language = {eng},
number = {4},
pages = {630-641},
title = {A Sobolev gradient method for treating the steady-state incompressible Navier-Stokes equations},
url = {http://eudml.org/doc/269068},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Robert Renka
TI - A Sobolev gradient method for treating the steady-state incompressible Navier-Stokes equations
JO - Open Mathematics
PY - 2013
VL - 11
IS - 4
SP - 630
EP - 641
AB - The velocity-vorticity-pressure formulation of the steady-state incompressible Navier-Stokes equations in two dimensions is cast as a nonlinear least squares problem in which the functional is a weighted sum of squared residuals. A finite element discretization of the functional is minimized by a trust-region method in which the trustregion radius is defined by a Sobolev norm and the trust-region subproblems are solved by a dogleg method. Numerical test results show the method to be effective.
LA - eng
KW - Finite element method; Least squares; Navier-Stokes; Sobolev gradient; Trust region; finite element method; least squares; trust region
UR - http://eudml.org/doc/269068
ER -

References

top
  1. [1] Agmon S., Douglis A., Nirenberg L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math., 1964, 17(1), 35–92 http://dx.doi.org/10.1002/cpa.3160170104 Zbl0123.28706
  2. [2] Bochev P.B., Analysis of least-squares finite element methods for the Navier-Stokes equations, SIAM J. Numer. Anal., 1997, 34(5), 1817–1844 http://dx.doi.org/10.1137/S0036142994276001 Zbl0901.76030
  3. [3] Bochev P.B., Gunzburger M.D., Analysis of least squares finite element methods for the Stokes equations, Math. Comp., 1994, 63(208), 479–506 http://dx.doi.org/10.1090/S0025-5718-1994-1257573-4 Zbl0816.65082
  4. [4] Bochev P.B., Gunzburger M.D., Least-Squares Finite Element Methods, Appl. Math. Sci., 166, Springer, New York, 2009 Zbl1168.65067
  5. [5] Bramble J.H., Lazarov R.D., Pasciak J.E., A least-squares approach based on a discrete minus one inner product for first order systems, Math. Comp., 1997, 66(219), 935–955 http://dx.doi.org/10.1090/S0025-5718-97-00848-X Zbl0870.65104
  6. [6] Deang J.M., Gunzburger M.D., Issues related to least-squares finite element methods for the Stokes equations, SIAM J. Sci. Comput., 1998, 20(3), 878–906 http://dx.doi.org/10.1137/S1064827595294526 Zbl0953.65083
  7. [7] Ghia U., Ghia K.N., Shin C.T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 1982, 48(3), 387–411 http://dx.doi.org/10.1016/0021-9991(82)90058-4 Zbl0511.76031
  8. [8] Jiang B.N., A least-squares finite element method for incompressible Navier-Stokes problems, Internat. J. Numer. Methods Fluids, 1992, 14(7), 843–859 http://dx.doi.org/10.1002/fld.1650140706 Zbl0753.76097
  9. [9] Jiang B., The Least-Squares Finite Element Method, Sci. Comput., Springer, Berlin, 1998 http://dx.doi.org/10.1007/978-3-662-03740-9 
  10. [10] Jiang B.-N., Lin T.L., Povinelli L.A., Large-scale computation of incompressible viscous flow by least-squares finite element method, Comput. Methods Appl. Mech. Engrg., 1994, 114(3–4), 213–231 http://dx.doi.org/10.1016/0045-7825(94)90172-4 
  11. [11] Kazemi P., Renka R.J., A Levenberg-Marquardt method based on Sobolev gradients, Nonlinear Anal., 2012, 75(16), 6170–6179 http://dx.doi.org/10.1016/j.na.2012.06.022 Zbl1248.49040
  12. [12] Layton W., Introduction to the Numerical Analysis of Incompressible Viscous Flows, Comput. Sci. Eng., 6, Society for Industrial and Applied Mathematics, Philadelphia, 2008 http://dx.doi.org/10.1137/1.9780898718904 Zbl1153.76002
  13. [13] Neuberger J.W., Sobolev Gradients and Differential Equations, 2nd ed., Lecture Notes in Math., 1670, Springer, Berlin, 2010 http://dx.doi.org/10.1007/978-3-642-04041-2 Zbl1203.35004
  14. [14] Nocedal J., Wright S.J., Numerical Optimization, Springer Ser. Oper. Res., Springer, New York, 1999 http://dx.doi.org/10.1007/b98874 
  15. [15] Renka R.J., Nonlinear least squares and Sobolev gradients, Appl. Numer. Math., 2013, 65, 91–104 http://dx.doi.org/10.1016/j.apnum.2012.12.002 Zbl1260.65060
  16. [16] Strang G., Fix G., An Analysis of the Finite Element Method, 2nd ed., Wellesley-Cambridge Press, Wellesley, 2008 Zbl1171.65081

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.