# On the singularities of multiple L-functions

Alexandru Zaharescu; Mohammad Zaki

Open Mathematics (2010)

- Volume: 8, Issue: 2, page 289-298
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topAlexandru Zaharescu, and Mohammad Zaki. "On the singularities of multiple L-functions." Open Mathematics 8.2 (2010): 289-298. <http://eudml.org/doc/269072>.

@article{AlexandruZaharescu2010,

abstract = {We investigate the singularities of a class of multiple L-functions considered by Akiyama and Ishikawa [2].},

author = {Alexandru Zaharescu, Mohammad Zaki},

journal = {Open Mathematics},

keywords = {Multiple L-functions; Multiple Hurwitz zeta functions; Dirichlet characters; multiple -functions},

language = {eng},

number = {2},

pages = {289-298},

title = {On the singularities of multiple L-functions},

url = {http://eudml.org/doc/269072},

volume = {8},

year = {2010},

}

TY - JOUR

AU - Alexandru Zaharescu

AU - Mohammad Zaki

TI - On the singularities of multiple L-functions

JO - Open Mathematics

PY - 2010

VL - 8

IS - 2

SP - 289

EP - 298

AB - We investigate the singularities of a class of multiple L-functions considered by Akiyama and Ishikawa [2].

LA - eng

KW - Multiple L-functions; Multiple Hurwitz zeta functions; Dirichlet characters; multiple -functions

UR - http://eudml.org/doc/269072

ER -

## References

top- [1] Akiyama S., Egami S., Tanigawa Y., Analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith., 2001, 98, 107–116 http://dx.doi.org/10.4064/aa98-2-1 Zbl0972.11085
- [2] Akiyama S., Ishikawa H., On analytic continuation of multiple L-functions and related zeta-functions, Analytic number theory (Beijing/Kyoto, 1999), 1–16, Dev. Math., 6, Kluwer Acad. Publ., Dordrecht, 2002 Zbl1028.11058
- [3] Apostol T., Vu T.H., Dirichlet series related to the Riemann zeta function, J. Number Theory, 1984, 19, 85–102 http://dx.doi.org/10.1016/0022-314X(84)90094-5
- [4] Atkinson F.V., The mean value of the Riemann zeta function, Acta Math., 1949, 81, 353–376 http://dx.doi.org/10.1007/BF02395027 Zbl0036.18603
- [5] Hardy G.H., Notes on some points in the integral calculus LV, On the integration of Fourier series, Messenger of Math., 1922, 51, 186–192; reprinted in Collected Papers of Hardy G.H. (including joint papers with Littlewood J.E. and others), Clarendon Press, Oxford, 1969, III, 506–512
- [6] Matsumoto K., On the analytic continuation of various multiple zeta-functions, Number theory for the millennium, II (Urbana, IL, 2000), 417–440, A K Peters, Natick, MA, 2002 Zbl1031.11051
- [7] Matsumoto K., On Mordell-Tornheim and other multiple zeta-functions, Proceedings of the Session in Analytic Number Theory and Diophantine Equations, 17 pp., Bonner Math. Schriften, 360, Univ. Bonn, Bonn, 2003 Zbl1056.11049
- [8] Matsumoto K., Asymptotic expansions of double zeta-functions of Barnes, of Shintani, and Eisenstein series, Nagoya Math. J., 2003, 172, 59–102 Zbl1060.11053
- [9] Matsumoto K., Asymptotic series for double zeta, double gamma, and Hecke L-functions, Math. Proc. Cambridge Phil. Soc., 1998, 123, 385–405 http://dx.doi.org/10.1017/S0305004197002168 Zbl0903.11021
- [10] Matsumoto K., The analytic continuation and the asymptotic behaviour of certain multiple zeta-functions II, Analytic and probabilistic methods in number theory (Palanga, 2001), 188–194, TEV, Vilnius, 2002 Zbl1195.11119
- [11] Matsumoto K., Analytic properties of multiple zeta-functions in several variables, Number theory, 153–173, Dev. Math., 15, Springer, New York, 2006 Zbl1197.11120
- [12] Matsumoto K., Tsumura H., On Witten multiple zeta-functions associated with semisimple Lie algebras I, Ann. Inst. Fourier (Grenoble), 2006, 56, 1457–1504 Zbl1168.11036
- [13] Matsumoto K., Tsumura H., Functional relations for various multiple zeta-functions, Analytic Number Theory (Kyoto, 2005), RIMS Kokyuroku, 2006, 1512, 179–190
- [14] Matsumoto K., Tsumura H., A new method of producing functional relations among multiple zeta-functions, Quart. J. Math., 2008, 59, 55–83 http://dx.doi.org/10.1093/qmath/ham025 Zbl1151.11045
- [15] Mordell L.J., On the evaluation of some multiple series, J. London Math. Soc., 1958, 33, 368–371 http://dx.doi.org/10.1112/jlms/s1-33.3.368 Zbl0081.27501
- [16] Murty R., Sinha K., Multiple Hurwitz zeta functions, Multiple Dirichlet series, automorphic forms, and analytic number theory, 135–156, Proc. Sympos. Pure Math., 75, Amer. Math. Soc., Providence, RI, 2006 Zbl1124.11046
- [17] Nakamura T., A functional relation for the Tornheim double zeta function, Acta Arith., 2006, 125, 257–263 http://dx.doi.org/10.4064/aa125-3-3 Zbl1153.11047
- [18] Tsumura H., On some combinatorial relations for Tornheim’s double series, Acta Arith., 2002, 105, 239–252 http://dx.doi.org/10.4064/aa105-3-3 Zbl1010.11048
- [19] Tsumura H.,Combinatorial relations for Euler-Zagier sums, Acta Arith., 2004, 111, 27–42 Zbl1153.11327
- [20] Tsumura H., Certain functional relations for the double harmonic series related to the double Euler numbers, J. Aust. Math. Soc., 2005, 79(3), 319–333 http://dx.doi.org/10.1017/S1446788700010922 Zbl1097.11048
- [21] Tsumura H.,On functional relations between the Mordell-Tornheim double zeta functions and the Riemann zeta function, Math. Proc. Cambridge Philos. Soc., 2007, 142, 395–405 Zbl1149.11044
- [22] Zagier D., Values of zeta functions and their applications, First European Congress of Mathematics, Vol. II (Paris, 1992), 497–512, Progr. Math., 120, Birkhäuser, Basel, 1994 Zbl0822.11001
- [23] Zhao J., Analytic continuation of multiple zeta functions, Proc. Amer. Math. Soc., 2000, 128, 1275–1283 http://dx.doi.org/10.1090/S0002-9939-99-05398-8 Zbl0949.11042

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.