On the singularities of multiple L-functions

Alexandru Zaharescu; Mohammad Zaki

Open Mathematics (2010)

  • Volume: 8, Issue: 2, page 289-298
  • ISSN: 2391-5455


We investigate the singularities of a class of multiple L-functions considered by Akiyama and Ishikawa [2].

How to cite


Alexandru Zaharescu, and Mohammad Zaki. "On the singularities of multiple L-functions." Open Mathematics 8.2 (2010): 289-298. <http://eudml.org/doc/269072>.

abstract = {We investigate the singularities of a class of multiple L-functions considered by Akiyama and Ishikawa [2].},
author = {Alexandru Zaharescu, Mohammad Zaki},
journal = {Open Mathematics},
keywords = {Multiple L-functions; Multiple Hurwitz zeta functions; Dirichlet characters; multiple -functions},
language = {eng},
number = {2},
pages = {289-298},
title = {On the singularities of multiple L-functions},
url = {http://eudml.org/doc/269072},
volume = {8},
year = {2010},

AU - Alexandru Zaharescu
AU - Mohammad Zaki
TI - On the singularities of multiple L-functions
JO - Open Mathematics
PY - 2010
VL - 8
IS - 2
SP - 289
EP - 298
AB - We investigate the singularities of a class of multiple L-functions considered by Akiyama and Ishikawa [2].
LA - eng
KW - Multiple L-functions; Multiple Hurwitz zeta functions; Dirichlet characters; multiple -functions
UR - http://eudml.org/doc/269072
ER -


  1. [1] Akiyama S., Egami S., Tanigawa Y., Analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith., 2001, 98, 107–116 http://dx.doi.org/10.4064/aa98-2-1 Zbl0972.11085
  2. [2] Akiyama S., Ishikawa H., On analytic continuation of multiple L-functions and related zeta-functions, Analytic number theory (Beijing/Kyoto, 1999), 1–16, Dev. Math., 6, Kluwer Acad. Publ., Dordrecht, 2002 Zbl1028.11058
  3. [3] Apostol T., Vu T.H., Dirichlet series related to the Riemann zeta function, J. Number Theory, 1984, 19, 85–102 http://dx.doi.org/10.1016/0022-314X(84)90094-5 
  4. [4] Atkinson F.V., The mean value of the Riemann zeta function, Acta Math., 1949, 81, 353–376 http://dx.doi.org/10.1007/BF02395027 Zbl0036.18603
  5. [5] Hardy G.H., Notes on some points in the integral calculus LV, On the integration of Fourier series, Messenger of Math., 1922, 51, 186–192; reprinted in Collected Papers of Hardy G.H. (including joint papers with Littlewood J.E. and others), Clarendon Press, Oxford, 1969, III, 506–512 
  6. [6] Matsumoto K., On the analytic continuation of various multiple zeta-functions, Number theory for the millennium, II (Urbana, IL, 2000), 417–440, A K Peters, Natick, MA, 2002 Zbl1031.11051
  7. [7] Matsumoto K., On Mordell-Tornheim and other multiple zeta-functions, Proceedings of the Session in Analytic Number Theory and Diophantine Equations, 17 pp., Bonner Math. Schriften, 360, Univ. Bonn, Bonn, 2003 Zbl1056.11049
  8. [8] Matsumoto K., Asymptotic expansions of double zeta-functions of Barnes, of Shintani, and Eisenstein series, Nagoya Math. J., 2003, 172, 59–102 Zbl1060.11053
  9. [9] Matsumoto K., Asymptotic series for double zeta, double gamma, and Hecke L-functions, Math. Proc. Cambridge Phil. Soc., 1998, 123, 385–405 http://dx.doi.org/10.1017/S0305004197002168 Zbl0903.11021
  10. [10] Matsumoto K., The analytic continuation and the asymptotic behaviour of certain multiple zeta-functions II, Analytic and probabilistic methods in number theory (Palanga, 2001), 188–194, TEV, Vilnius, 2002 Zbl1195.11119
  11. [11] Matsumoto K., Analytic properties of multiple zeta-functions in several variables, Number theory, 153–173, Dev. Math., 15, Springer, New York, 2006 Zbl1197.11120
  12. [12] Matsumoto K., Tsumura H., On Witten multiple zeta-functions associated with semisimple Lie algebras I, Ann. Inst. Fourier (Grenoble), 2006, 56, 1457–1504 Zbl1168.11036
  13. [13] Matsumoto K., Tsumura H., Functional relations for various multiple zeta-functions, Analytic Number Theory (Kyoto, 2005), RIMS Kokyuroku, 2006, 1512, 179–190 
  14. [14] Matsumoto K., Tsumura H., A new method of producing functional relations among multiple zeta-functions, Quart. J. Math., 2008, 59, 55–83 http://dx.doi.org/10.1093/qmath/ham025 Zbl1151.11045
  15. [15] Mordell L.J., On the evaluation of some multiple series, J. London Math. Soc., 1958, 33, 368–371 http://dx.doi.org/10.1112/jlms/s1-33.3.368 Zbl0081.27501
  16. [16] Murty R., Sinha K., Multiple Hurwitz zeta functions, Multiple Dirichlet series, automorphic forms, and analytic number theory, 135–156, Proc. Sympos. Pure Math., 75, Amer. Math. Soc., Providence, RI, 2006 Zbl1124.11046
  17. [17] Nakamura T., A functional relation for the Tornheim double zeta function, Acta Arith., 2006, 125, 257–263 http://dx.doi.org/10.4064/aa125-3-3 Zbl1153.11047
  18. [18] Tsumura H., On some combinatorial relations for Tornheim’s double series, Acta Arith., 2002, 105, 239–252 http://dx.doi.org/10.4064/aa105-3-3 Zbl1010.11048
  19. [19] Tsumura H.,Combinatorial relations for Euler-Zagier sums, Acta Arith., 2004, 111, 27–42 Zbl1153.11327
  20. [20] Tsumura H., Certain functional relations for the double harmonic series related to the double Euler numbers, J. Aust. Math. Soc., 2005, 79(3), 319–333 http://dx.doi.org/10.1017/S1446788700010922 Zbl1097.11048
  21. [21] Tsumura H.,On functional relations between the Mordell-Tornheim double zeta functions and the Riemann zeta function, Math. Proc. Cambridge Philos. Soc., 2007, 142, 395–405 Zbl1149.11044
  22. [22] Zagier D., Values of zeta functions and their applications, First European Congress of Mathematics, Vol. II (Paris, 1992), 497–512, Progr. Math., 120, Birkhäuser, Basel, 1994 Zbl0822.11001
  23. [23] Zhao J., Analytic continuation of multiple zeta functions, Proc. Amer. Math. Soc., 2000, 128, 1275–1283 http://dx.doi.org/10.1090/S0002-9939-99-05398-8 Zbl0949.11042

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.